Second-principles simulations of counter-rotating vortices pairs in PbTiO₃/SrTiO₃ superlattices

Javier Junquera

Collaborators

Pablo García-Fernández

Jorge Íñiguez

LUXEMBOURG INSTITUTE OF SCIENCE AND TECHNOLOGY

Fernando Gómez

Mauro Gonçalves

Pablo Aguado-Puente

...Plus all the experimental group of Prof. Ramesh at UC Berkeley

Spin Textures in Magnets with D-M Interactions Skyrmions, Merons, Anti-merons,...

Can we do the same in ferroelectrics? Are there fundamental differences between the spin and dipole moment.. Lot of debate on this

U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006)

Spin Textures in Magnets with D-M Interactions Skyrmions, Merons, Anti-merons,...

Springer Series in Materials Science 228

Jan Seidel Editor

Topological Structures in Ferroic Materials

Domain Walls, Vortices and Skyrmions

Deringer

Can we do the same in ferroelectrics? Are there fundamental differences between the spin and dipole moment.. Lot of debate on this

U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797 (2006)

Complex domain arrangements in nanoscale FE has triggered the search for exotic topologies

Néel-like domain wall in $Pb(Zr_{0.40}Ti_{0.60})O_3$

X.-K. Wei e*t al.* Nat. Commun. 7, 12385 (2016)

Kittel-like domain wall in Co/PbTiO₃/(La,Sr)MnO₃

J. J. P. Peters *et al.* Nat. Commun. 7, 13484 (2016)

Requirements: both in-plane and out-of-plane P; interface must show polarization rotation

The balance of elastic, electrostatic, and gradient energies yield a very complex phase diagram

C. Lichtensteiger *et al.*, Chapter 12 in Oxide Ultrathin Films, Science and Technology, Wiley (2011).

P. Aguado-Puente *et al.* Phys. Rev. Lett. 107, 217601 (2017)

Short-period PbTiO₃/SrTiO₃ superlattices: the GS involves trilinear coupling between two AFD modes and a polar FE mode

Hybrid improper ferroelectricity

E. Bousquet et al., Nature 452, 732 (2008)

Evolution of the interlayer coupling with periodicity in $(PbTiO_3)_n/(SrTiO_3)_n$ superlattices

Transition between strong interlayer coupling (monodomain) to weak interlayer coupling (polydomain) electrostatic regime

12) $800 \\ 800 \\ 600 \\ 100 \\ 100 \\ 200 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 10 \\ KNbO_3 layer thickness (nm)$

4

coupled

decoupled

100

Ļ

Transition between strong interlayer coupling (monodomain) to weak interlayer coupling (polydomain) electrostatic regime

P. Aguado-Puente and J. Junquera Phys. Rev. B 85, 184105 (2012)

AFD not allowed
AFD allowed
Domain walls along [110]

Domains in PbTiO₃/SrTiO₃ superlattices: adopt the closure-domain structure with vortices

3/3 superlattice SrTiO₃

PbTiO₃

SrTiO₃ 6/6 superlattice SrTiO₃ Near the DWs the local polarization pattern displays a continuous polarization rotation within 3 u.c. around the DW, connecting two 180° domains

PbTiO₃

SrTiO₃

P. Aguado-Puente and J. Junquera Phys. Rev. B 85, 184105 (2012)

Yadav et al, Nature 530, 198 (2016)

Complex polarization textures in ferroelectric nanostructures

Both a vortex and a polarization aligned along the normal of the plane containing the vortex

BaTiO₃ nanowires embedded in a SrTiO₃ matrix

The whole system is chiral

L. Louis e*t al.* J. Phys.: Condens. Matter 24, 402201 (2012) Occurrence of natural optical activity BaTiO₃ nanowires embedded in a SrTiO₃ matrix

Large gyrotropic coefficient. Sense of rotation can be reversed by an external electric field S. Prosandeev et al.

5. Prosandeev *et al*. Phys. Rev. B 87, 195111 (2013)

Complex polarization textures in ferroelectric nanostructures

Both a vortex and a polarization aligned along the normal of the plane containing the vortex

BaTiO₃ nanowires embedded in a SrTiO₃ matrix

The whole system is chiral

L. Louis *et al.* J. Phys.: Condens. Matter 24, 402201 (2012) Discovery of stable skyrmion states in ferroelectric nanocomposites BaTiO₃ nanowires embedded in a SrTiO₃ matrix

Y. Nahas et al. Nat. Commun. 6, 8542 (2015)

Second-principles method including the relevant electron and lattice degrees of freedom

PHYSICAL REVIEW B 93, 195137 (2016)

Second-principles method for materials simulations including electron and lattice degrees of freedom

Pablo García-Fernández,¹ Jacek C. Wojdeł,² Jorge Íñiguez,^{2,3} and Javier Junquera¹

Goal:

- Simulate both atomic and electronic degrees of freedom of very large systems (over 10⁴ atoms) on the same footing
- With arbitrary high accuracy
- At a modest computational cost
- At operating conditions (finite-T, time-dependent fields, ...)

SCALE UP An implementation of SPDFT

SCALE-UP: Second-principles Computational Approach for Lattice and Electrons https://www.secondprinciples.unican.es

SCALE-UP:

Second-principles Computational Approach for Lattice and Electrons https://www.secondprinciples.unican.es

PHYSICAL REVIEW B 93, 195137 (2016)

Second-principles method for materials simulations including electron and lattice degrees of freedom

Pablo García-Fernández,¹ Jacek C. Wojdeł,² Jorge Íñiguez,^{2,3} and Javier Junquera¹

Accurate model potential to describe the lattice-dynamical properties

÷

A tight-binding like approach to describe the relevant electronic degrees of freedom

J. Wojdel *et al.* J. Phys.: Condens. Matter 25, 305401 (2013) **Electron-phonon interactions**

Parameters fitted from first-principles simulations on small systems

Emergent topological properties at PbTiO₃/SrTiO₃ superlattices

Emerging chirality in polar vortex superlattices

Bubble skyrmions

Coexistence of phases

Second-principles simulations of (PbTiO₃)_n/(SrTiO₃)_n superlattices (n=10)

Different atomic geometries very close in energy

Continuous rotation of the local dipoles with pairs of clock-wise and counter-clock-wise rotation patterns along [100]_V

Superimposed to the vortices: a polarization component along the axial direction of the vortices [010]_v

In plane polarization in FE domains

The domain walls might be ferroelectric themselves

In plane polarization in FE domains

Rich structure predicted in (111) BaTiO₃ domain walls

PHYSICAL REVIEW B 92, 094106 (2015)

Ising lines: Natural topological defects within ferroelectric Bloch walls

V. Stepkova, P. Marton, and J. Hlinka*

Plus many works by E. Salkje

Second-principles simulations of (PbTiO₃)_n/(SrTiO₃)_n superlattices (n=10)

Domain walls of a mixed Ising-Bloch-Néel character

D. Lee *et al.* Phys. Rev. B 80, 060102 (2009)

Chirality of simulated three-dimensional electrical polarization configuration

Three orthogonal reflections of the original vortex supercell

The reflected images all map onto one another BUT cannot be mapped onto the original structure by any combinations of rotations and/or translations

They are chiral enantiomers

Two of the structures are chiral enantiomers

A handedness can be defined

The handedness of a given vortex can be characterized by the sign of the helicity

Helicity

$$\mathcal{H} = \int \vec{p} \cdot (\nabla \times \vec{p}) \, d\vec{r}$$

Helicity density concentrated at vortex cores

Within the central PbTiO₃ layers of the chiral vortex arrays, the electric polarization forms a helical struc

Each TiO₆ unit provides a a contribution to the x-ray scattering amplitude that varies with polarization orientation

The chiral helical structure imparts a chiral structure factor onto the scattering amplitude

Near resonant transitions, the x-rays are sensitive to the anisotropic electronic structure of the distorted TiO₆ octahedra

Mirrored diffraction vectors detect opposite rotational patterns in chiral textures

A helical rotation of the electric polarization can produce resonant soft x-ray diffraction peaks with anti-symmetric XCD

Mirrored diffraction vectors detect opposite rotational patterns in chiral textures

Helical arrangement of the electric polarization and associated anisotropic octahedral distortion

Continuous rotation of the local ferroelectric polarization Continuous tilts of the Ti t_{2g} -like orbitals relative to polarized x-ray beam $q_{lateral} > 0$ senses a clockwise helical rotation of the polarization $q_{lateral} < 0$ senses a counterclockwise helical rotation of the polarization Anti-symmetric XCD in these diffraction spots is a result of the chiral texture being detected with opposite rotational sense P. Shafer, P. García-Fernández *et al.* submitted

Evidence of quirality measured in polar vortex arrays by resonant soft x-ray diffraction

P. Shafer, P. García-Fernández et al. submitted

Soft x-ray wavelength: (1-3 nm) Well matched to the periodicity of the lateral vortex modulations

Soft x-ray energy in the vicinity of resonant electronic transitions:

 $Ti_{2p} \longrightarrow Ti_{3d (t2g)}$

Directly probe the anisotropic electronic structure of the TiO₆ octahedra + Enhancement of the scattering cross section

Synchrotron-based XRD reciprocal space maps have confirmed these lateral superlattice modulations as pairs of weak satellites that decorate the atomic Bragg peaks

 $\vec{q} = \vec{G} \pm (m\vec{q}_{\rm v,pair})$

 $\vec{q}_{v,pair}$ corresponds to the lateral period, directed along [100]_v

m is the order of the satellite

Evidence of quirality measured in polar vortex arrays by resonant soft x-ray diffraction

Line cut through lateral satellite peaks

The intensity of the diffraction peak is markedly different for circularly polarized incoming x-rays with opposite left- and right-helicity, with differences on the order of ~20%.

Evidence of quirality measured in polar vortex arrays by resonant soft x-ray diffraction

Line cut through lateral satellite peaks

The intensity of the diffraction peak is markedly different for circularly polarized incoming x-rays with opposite left- and right-helicity, with differences on the order of ~20%.

Take home message

Chirality can be induced by the complex interactions in artificial superlattices constructed from two non-chiral objects

Chirality manifests as an alternating inplane component of electric polarization, that couples to the swirling cores of a vortex structure

Second-principles simulations in very good agreement with resonant soft x-ray diffraction patterns

Take home message

Chirality can be induced by the complex interactions in artificial superlattices constructed from two non-chiral objects

Chirality manifests as an alternating inplane component of electric polarization, that couples to the swirling cores of a vortex structure

Second-principles simulations in very good agreement with resonant soft x-ray diffraction patterns

Emergent topological properties at PbTiO₃/SrTiO₃ superlattices

Emerging chirality in polar vortex superlattices

Bubble skyrmions

Coexistence of phases

Phase Evolution vs. superlattice periodicity

A. Damodaran et al. Nat. Mater. 16, 1003 (2017)

Structural evolution of ferroelectric and vortex phases with superlattice periodicity

Phase competition, order parameter coexistence and emergent order parameter in the same PbTiO₃/SrTiO₃ superlattice system

A. Damodaran et al. Nat. Mater. 16, 1003 (2017)

At room temperature, the coexisting vortex and ferroelectric phases spontaneously assemble in a mesoscale

A. Damodaran et al. Nat. Mater. 16, 1003 (2017)
The application of an electric field results in the deterministic interconversion between the vortex and the FE phase

As grown: clockwise and anticlockwise vortices

Collapse of the local dipoles to point parallel to the field, forming a unique domain along *x* Sinusoidal domain structure in the *yz* plane nucleates, the first Fourier component of the vortex phase

Orders of magnitude changes in piezoelectric and nonlinear optical properties A similar effect to colossal magnetorresistance

A. Damodaran et al. Nat. Mater. 16, 1003 (2017)

Take home message

Ferroelectric a_1/a_2 domains coexist with vortex structures

Reversible phase transitions can be induced

A. Damodaran et al. Nat. Mater. 16, 1003 (2017)

Emergent topological properties at PbTiO₃/SrTiO₃ superlattices

Emerging chirality in polar vortex superlattices

Bubble skyrmions

Coexistence of phases

"Bubble domains" in Pb(Zr_{0.2}Ti_{0.8})O₃/SrTiO₃/Pb(Zr_{0.2}Ti_{0.8})O₃ DVANCED SCIENCE NEWS

Laterally confined spheroids of sub 10 nm-size with local dipoles self-aligned in a direction opposite to the macroscopic polarization of a surrounding ferroelectric matrix

Q. Zhang et al. Adv. Mater. 1702375 (2017)

"Bubble domains" in PbTiO₃/SrTiO₃ superlattices

Experimental challenge:

Image with atomic resolution

From Ramesh's group (see next talk)

Theoretical challenge:

Modern chiral skyrmions can be topologically identical to classical magnetic bubble domains,

Can ferroelectric bubble domains can be considered a precursor to electrical skyrmions?

Bottom interface

Top interface

Similar structures found in other Condensed Matter Problems

Take home message

Ferroelectric bubble domains can be considered a precursor to electrical skyrmions

All layers along [001] plane do have a well defined skyrmion number of +1

Top and bottom interfaces show hedgehog like structures Central planes show planar skyrmions

From the "Workshop description"

The main goal of the workshop is to refine attendees' picture of the state of the art regarding ferroelectric domain walls properties and applications, focusing on what are the open problems, and what are the opportunities for development of approaches to solve them

SCALE-UP:

Second-principles Computational Approach for Lattice and Electrons https://www.secondprinciples.unican.es

IOP PUBLISHING J. Phys.: Condens. Matter 25 (2013) 305401 (25pp) JOURNAL OF PHYSICS: CONDENSED MATTER

First-principles model potentials for lattice-dynamical studies: general methodology and example of application to ferroic perovskite oxides

Jacek C Wojdeł¹, Patrick Hermet^{2,3}, Mathias P Ljungberg¹, Philippe Ghosez² and Jorge Íñiguez¹

PHYSICAL REVIEW B 93, 195137 (2016)

Second-principles method for materials simulations including electron and lattice degrees of freedom

Pablo García-Fernández,¹ Jacek C. Wojdeł,² Jorge Íñiguez,^{2,3} and Javier Junquera¹

Vortices.. A Fundamental Aspect of Nature

Supplementary information

Vortex structure stable up to 85 K

At high temperature, thermal fluctuations allow local flipping of some dipoles The domain wall changes their shape from one plane to the next

The actual transition temperature might be significantly higher than this theoretical value, as an accurate determination of the transition point is known to be especially challenging to second-principles methods

P. Shafer, P. García-Fernández et al. submitted

Potential detection of the axial component in planar view HR-STEM or dark field transmission electron microscopy

Variations in the strength and orientation of the axial polarization as a function of depth act to dilute the signal below detection limits

Nanoscale vortex modulation in PbTiO₃/SrTiO₃ superlattices and particularly depth-dependence challenges nearly every advanced characterization technique in detecting the alternating axial polarization

Anisotropic tensor susceptibility (ATS) scattering

Near resonant transitions, the x-rays are sensitive to the anisotropic electronic structure of the distorted TiO₆ octahedra

The anisotropic dielectric response of each TiO₆ unit to resonant soft x-rays provides a contribution to the x-ray scattering amplitude that varies with polarization orientation

Anisotropic tensor susceptibility (ATS) scattering

Near resonant transitions, the x-rays are sensitive to the anisotropic electronic structure of the distorted TiO₆ octahedra

The chiral helical structure imparts a chiral structure factor onto the scattering amplitude The chiral electric polarization texture of the vortex arrays

generates a coherent superposition of chiral structure factors

Evolution of the interlayer coupling with thickness in $(PbTiO_3)_n/(SrTiO_3)_n$

For larger SrTiO₃ thickness, electrostatic coupling decreases

SrTiO₃ polarization reduces in \sim 30% from (3/3) to (6/6)

Progressive electrostatic decoupling (P. Zubko et al. Nano Letters 12, 2846 (2012)

Weak coupling

PbTiO₃/SrTiO₃ 6/6 superlattices (DyScO₃ substrate)

Parallel

Offset

Antiparallel

"No-py"

Different screening mechanisms of the depolarizing field

C. Lichtensteiger, P. Zubko, M. Stengel, P. Aguado-Puente, J.-M. Triscone, Ph. Ghosez and J. Junquera. Chapter 12 in Oxide Ultrathin Films, Science and Technology, Wiley (2011).

Definition of chirality and optical activity

A system is said to be chiral when it cannot be transformed into its mirror image with rotations and translations alone

A handedness can be defined using the right-hand rule.

Compounds with chiral symmetry are optically active: polarization direction of linearly-polarized light rotates when light travels through the material.

Chirality of the observed structures

Case without out-of-plane component of the poralization

Chiral dipole arrangements could open the door to switchable optical activity

If toroidal moment can coexist with a polarization parallel to the toroidal axis in ferroelectric nanostructures, switchable chirality and optical activity could be accomplished

Electro-optic device

Four-fold stability \rightarrow four "memory" states.

Positive/negative polarization X clockwise/anticlockwise vortex

This kind of dipole arrangements have been experimentally realized!

Enhanced conductivity in vortices in BiFeO₃

Balke, Nature Physics (2012)

Evolution of the interlayer coupling with thickness in $(PbTiO_3)_n/(SrTiO_3)_n$

For larger SrTiO₃ thickness, electrostatic coupling decreases

SrTiO₃ polarization reduces in \sim 30% from (3/3) to (6/6)

Progressive electrostatic decoupling P. Zubko et al. Nano Letters 12, 2846 (2012)

PTO polarization decreases upon upproaching the interface, in agreement with EELS measurements.

Mirrored diffraction vectors detect opposite rotational patterns in chiral textures

Helical arrangement of the electric polarization and associated anisotropic octahedral distortion

Continuous rotation of the local ferroelectric polarization Continuous tilts of the Ti t_{2g} -like orbitals relative to polarized x-ray beam

 $q_{\text{lateral}} > 0$ senses a clockwise helical rotation of the polarization $q_{\text{lateral}} < 0$ senses a counterclockwise helical rotation of the polarization Anti-symmetric XCD in these diffraction spots is a result of the chiral texture being detected with opposite rotational sense P. Shafer, P. García-Fernández *et al.* submitted