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Complex domain arrangements in nanoscale FE   
has triggered the search for exotic topologies

domains are in agreement with earlier experimental results on the
second-order nature of the ferroelectric phase transition in this
composition range34 (Supplementary Note 1 and Supplementary
Fig. 1). Under two-beam conditions, diffraction contrast analysis
using P . g 40 relation (P is a component of PS and g is a scatting
vector)35 reveals that sizes of the nesting domains are less than
20 nm and the domain boundaries cannot be clearly identified, as
seen in Fig. 1c. In the selected area electron diffraction pattern
shown in Fig. 1d, the reflection spots can be registered as the
tetragonal phase, with a tetragonality c/aE1.043. However,
splitting of the reflection spots, which is thoroughly different
from that of 90! domains36, can be found by a careful inspection,
further corroborating the coexistence of the monoclinic phase
with the tetragonal phase.

To clearly reveal the spot splitting, the area including the (00!2)
reflection is magnified and exemplified in Fig. 1e. Measurements
yield that the c axis relating to the left- and right-side reflection
spots is B0.415 and 0.411 nm, respectively. The good agreement
of the measured results with the data from high-resolution
synchrotron X-ray diffraction25 indicates that the two split spots
can be indexed as the tetragonal (00!2)T and the monoclinic
(00!2)M, respectively. The (00!2)T spot is found to stretch towards
the (00!2)M spot, suggesting that lattice distortion takes place.

Atom-resolution TEM study. To investigate details of the
domain and domain wall structures, high-resolution TEM
experiments were performed on the PZT crystals under the NCSI
conditions. Figure 2a shows an atom-resolution image recorded
along the [110]T/[100]M direction of the x¼ 0.60 crystal.
Considering the relative shifts of oxygen columns with respect to
centres of the nearest neighbouring Zr/Ti columns, this image
area can be divided into several different domains. Further
consideration of the symmetry-allowed directions for the atomic

displacements allows us to assign the domain types, either
tetragonal or monoclinic, the PBs and the domain walls.

The tetragonal domains, T-I and T-II, show upward shifts of
the oxygen columns (denoted by red arrows) along the [001]
direction. In contrast, in the monoclinic domains, M-I and M-II,
the oxygen columns shift to right-up and left-up, respectively,
evidently deviating from the [001] direction. A small part of M-III
domain is also detected in the right part of the image area. The
displacement features of oxygen columns in the M-I, T-I and
M-II domains can be directly identified from the magnified
images shown in Fig. 2b–d. Yellow, blue and red circles denote
Pb/O1, Zr/Ti and O2 atom columns, respectively. It is seen that
the main part of the PBs lies in the (001)T, (1!10)T and (1!11)T
planes, and the rest is faceted irregularly. Particularly, the M-II,
T-II and M-I domains form a flux-closure structure.

A particularly interesting feature of the atomic structure is seen
in the region including the central plane of the wall between
domains M-I and M-II, as denoted by a white dotted line in
Fig. 2a and shown again by green arrows in Fig. 3a, where the
oxygen columns exhibit vertical displacements. Meanwhile, a wall
segment shifted downward by cM/2, in which the displacements
of oxygen columns undergo a sharp transition, is observed at the
right side of the region. Measurements of the relative displace-
ments of oxygen columns on the left-side wall segment, extending
the areas upwards and downwards from the central plane, reveal
a continuous change of the oxygen displacements, that is,
continuous rotation of the displacements from leftward (slightly
up) in M-II through upward at central plane to rightward
(slightly up) in M-I. The displacement feature of oxygen atoms
forms a structure similar to the Néel wall in ferromagnets37.
Quantitative measurement of the atom displacements is
performed based on an iterative procedure for comparison
between the experimental image and image simulated over this
area (Supplementary Note 2 and Supplementary Fig. 2). The
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Figure 2 | Atom-resolved phase boundaries and domain walls in Pb(Zr0.40Ti0.60)O3 crystal. (a) The panoramic view of nesting tetragonal and
monoclinic domains viewed along the [110]T direction. Yellow dotted lines trace the boundaries between the tetragonal and monoclinic phases, and white
dotted lines trace the domain walls in the monoclinic phase. The phase and domain boundaries are differentiated by mapping the relative displacements of
O2 columns (red arrows) with respect to centres of the nearest neighbouring Zr/Ti columns over the whole image. Scale bar, 1 nm. (b–d) Enlarged view of
the relative displacements of the O2 columns in domains M-I, T-I and M-II in a. The colour circles overlapped on the images denote different column types:
Pb/O1—yellow, Zr/Ti—blue and O2—red. The vertical dashed and solid lines indicate positions of the Zr/Ti columns and centres of their nearest
neighbours. The relative displacements of O2 columns with respect to these centres can be directly identified in this way.
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the O2! columns are now visible and the B cation contrast has
improved (Fig. 2d). From this image the column positions is
measurable to a few picometres22,23.

The two-dimensional quiver plot of the local dipole, shown in
Fig. 2e, indicates that PTO is in a ferroelectric state. In the centre
of the image, the polarization points upward towards the Co
whereas on the left and right polarization points downwards, that
is, a classic 180! domain structure. This would be expected to
show Ising type domain walls with a wall width of the order of
2 u.c. Nevertheless, a relatively wide wall with a roughness of
B4–5 u.c. is revealed. Additionally, the polarization map
provides evidence of two small vortices, highlighted in Fig. 2f,g.
In these areas, the dipole direction changes continuously anti-
clockwise then clockwise, forming a paired vortex and anti-vortex
state similar to the PTO–STO superlattice case recently reported
by Yadav et al.7 The vortices are located at the domain walls,
forming a more complex structure separating the two opposite
ferroelectric domains. The clockwise vortex is observed close to
the Co–PTO interface whilst the anti-clockwise vortex is near
the LSMO–PTO interface. We note that an atom column that
contains varying displacements perpendicular to the beam
direction would appear elongated (that is, corresponding to the
projection of the mixed positions). Such an effect is absent,

indicating that the measured dipoles are constant through the
thickness of the specimen. This would not be the case with
Néel or Bloch-type walls extending within the thickness of the
TEM specimen. From Fig. 2 it can therefore be inferred that
the depolarization field, always present in ferroelectric films, has
an effect on the polarization distribution when the PTO film
thickness is below 10 unit cells, though this may extend to even
thicker films, as predicted by ab initio calculations24. It is
important to note the asymmetry of the electrodes and how this
affects polarization in the PTO ultrathin film. Vertically averaging
the out of plane polarization gives Fig. 2h with the amplitude
smoothly changing between positive and negative at the domain
walls. The polarization pointing down towards the LSMO
electrode has an average value of 80±1mC cm! 2, close to the
value of B84 mC cm! 2 obtained using bulk displacements25.
There exists a decrease in the polarization magnitude pointing
towards the Co (70±2 mC cm! 2), a result of the asymmetric
screening of the depolarization field by the different electrodes.
It can be seen in Supplementary Fig. 1 that the polarization is
mostly constant across the film but extends into the LSMO layer,
inducing a displacement within the first 2–3 u.c. of the interface.
Cobalt, as a good metal, is able to screen the positive and negative
charge accumulation, whereas LSMO is a half-metal with lower
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Figure 2 | Nine unit cells thick PTO tunnel junction. (a) Atomic resolution ADF image. (b) Intensity plot from a showing atom column composition.
(c) ABF signal collected simultaneously to a. All scale bars, 2 nm. (d) Magnified regions from a,c showing the structure in LSMO and PTO and the
difference in contrast. (e) Quiver plot showing dipoles measured from c. (f,g) Enlarged versions of the regions highlighted on the left and right domain walls
in e respectively. Each area is centred on a vortex. (h) Average out of plane polarization across the domains. Error bars are the s.e.m.
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The balance of elastic, electrostatic, and gradient energies yield
a very complex phase diagram

P. Aguado-Puente et al.
Phys. Rev. Lett. 107, 217601 (2017)
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Evolution of the interlayer coupling with periodicity 
in (PbTiO3)n/(SrTiO3)n superlattices
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Electrostatic Coupling and Local Structural Distortions at Interfaces
in Ferroelectric/Paraelectric Superlattices
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ABSTRACT: The performance of ferroelectric devices is intimately
entwined with the structure and dynamics of ferroelectric domains. In
ultrathin ferroelectrics, ordered nanodomains arise naturally in response
to the presence of a depolarizing field and give rise to highly
inhomogeneous polarization and structural profiles. Ferroelectric
superlattices offer a unique way of engineering the desired nanodomain
structure by modifying the strength of the electrostatic interactions
between different ferroelectric layers. Through a combination of X-ray
diffraction, transmission electron microscopy, and first-principles
calculations, the electrostatic coupling between ferroelectric layers is
studied, revealing the existence of interfacial layers of reduced
tetragonality attributed to inhomogeneous strain and polarization
profiles associated with the domain structure.
KEYWORDS: Ferroelectric domains, oxide superlattices, electrostatic coupling, electron energy loss spectroscopy

Ultrathin ferroelectrics offer a number of possibilities for
applications that include increased storage densities for

conventional ferroelectric random access memories as well as
novel devices such as ferroelectric tunnel junctions.1 This has
motivated a tremendous amount of research aimed at
understanding ferroelectricity at the nanoscale. The current
consensus is that ferroelectricity can be preserved down to
arbitrarily small thicknesses as long as depolarizing fields, which
arise from the incomplete screening of the spontaneous
polarization and act to suppress it, can be sufficiently reduced.
These depolarizing fields can be kept at bay by careful design of
the metal−ferroelectric interfaces,2,3 but even in the absence of
electrodes or other sources of free charge, ultrathin ferro-
electrics find ways of preserving their polar state.
One possibility is to form regular stripe domain structures

with alternating regions of opposite polarization that lead to
macroscopic charge neutrality on the surfaces. Ordered
ferroelectric domains, only a few nanometers in width, have
been observed by X-ray diffraction (XRD) in films of lead
titanate as thin as 3 unit cells.4 Studying the properties of such
domains is, however, extremely challenging. The ultrathin films
required to observe them are generally too conducting for
application of macroscopic electric fields and even local
scanning probe techniques are pushed to the limits of their
resolution by the tiny domain sizes.5 Superlattices composed of
ferroelectric and paraelectric layers offer a unique opportunity
to investigate the response of such nanodomains to uniform
applied fields and in addition to engineer domain structures

that enhance the functional properties of these artificial
materials.6 Domains in such layered ferroelectrics are expected
to give rise to highly inhomogeneous polarization and structural
profiles, which have so far been only predicted theoretically7,8

or inferred by indirect means.9−11 Here, we study the structure
and interactions between ferroelectric layers in such poly-
domain superlattices using XRD, ultrahigh resolution electron
energy loss spectroscopy (EELS), and first-principles calcu-
lations within density functional theory (DFT). Our findings
reveal surprisingly weak electrostatic interlayer coupling and
highly inhomogeneous near-interface structures within the
PTO layers that point toward domain morphologies exhibiting
significant departure from the classic Kittel model.12

When ferroelectric and paraelectric materials are combined
in a superlattice structure, any discontinuity in the out-of-plane
component of the polarization at the interfaces between the
two materials will create large depolarizing fields in the
structure and is energetically very costly. The system will
therefore respond in one of a number of ways.
For sufficiently thin paraelectric layers, the depolarizing field

can be eliminated by adopting a uniform polarization
throughout the thickness of the superlattice.13−15 The ferro-
electric layers are thus electrostatically coupled and the price to
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Transition between strong interlayer coupling (monodomain) to 
weak interlayer coupling (polydomain) electrostatic regime
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gain further insight on the polarization and oxygen octahe-
dra rotation profiles. Besides, we compare the differences
in energies between relevant phases. The influence of the
periodicity, orientation, energy of the DWs, and the mixed
FE-AFD-strain coupling present in these superlattices8 are
carefully considered. We also analyze the strain fields induced
by the domain structure and their role in the interlayer
coupling.

The rest of the paper is organized as follows. The method
on which the simulations are based is decribed in Sec. II. In
Sec. III A, we compare the energy of the different competing
phases (monodomain versus polydomain) to ascertain their
relative stability. The atomic structure of the domains is
analyzed in Sec. III B. Finally, the polarization profiles and
strain fields are discussed in Sec. III C.

II. METHODS

The simulations have been carried out within the local
density approximation (LDA) to the density functional theory
(DFT) using the SIESTA code.34 The rest of the technical
parameters remain the same as in Ref. 8. In this work,
we have performed simulations of (n | n) superlattices, by
means of a supercell approach. Two values of n have been
considered, n = 3 and 6, aiming to sample superlattices within
the two distinct regimes experimentally observed: strong (for
n ! 4) and weak (for n " 4) electrostatic coupling between
the SrTiO3 and PbTiO3 layers.

As the starting point, an ideal structure was defined stacking
along the [001] direction n unit cells of SrTiO3 and n unit
cells of PbTiO3. The in-plane lattice constant was fixed to
the theoretical LDA value of SrTiO3 (3.874 Å). First, mirror
symmetry planes were imposed at the central atomic layers
of PbTiO3 and SrTiO3, and an initial atomic relaxation was
performed in order to find a reference paraelectric ground
state. Then, in order to simulate polydomain configurations
with DW running along ⟨010⟩ planes, the reference structure
was replicated Nx times along the [100] direction and Ny

times along the [010] direction. Due to the periodic boundary
conditions used in the simulations, Nx determines the domain
periodicity, while Ny allows to switch on (Ny = 2) and off
(Ny = 1) the AFD instabilities. Also DW oriented along
the ⟨110⟩ direction have been simulated, using a reference
structure with

√
2 ×

√
2 in-plane lattice parameters, which is

replicated N110 times along the [110] direction for a domain
periodicity of

√
2N110. Following the recipe given in Ref. 16, a

percentage of the bulk soft mode distortion was superimposed
on the PbTiO3 layers, so the polarization points upwards in half
of the superlattice and downward in the other half (positive and
negative polarization along the [001] direction, respectively).
For Ny = 2 superlattices, small rotations were induced by
hand following a a0a0c− pattern in Glazer notation. Finally, an
extra atomic relaxation of the full heterostructure was carried
out, until the maximum value of the Hellman-Feynman forces
and the zz stress tensor component fell below 0.01 eV/Å and
0.0001 eV/Å3 respectively [except for the (3 | 3) superlattice
with Nx = 16 and Ny = 2 (960 atoms in the simulation box)
and for the (6 | 6) superlattice with Nx = 12 and Ny = 1
(720 atoms), which were relaxed down to a maximum force
of 0.05 eV/Å]. To establish the notation, we will call the

plane parallel to the interface the (x,y) plane, whereas the
perpendicular direction will be referred to as the z axis.

III. RESULTS

A. Energetics

For the (3 | 3) superlattices, we have performed simulations
of the different competing phases in order to determine
their relative stability. The energies of the polydomain,
monodomain, and nonpolar configurations as a function of the
domain periodicity are shown in Fig. 1. For these superlattices,
the balance between the electrostatic energy (which tends to
reduce the domain period), and the DW energy density (which
tends to increase it) results in an optimum periodicity of the
domain structure, !, of about 12 unit cells (46.5 Å) (the energy
for Nx equal 12 and 16 might be considered as equivalent
within the accuracy of our simulations).

The most stable phase found in our simulations, however,
corresponds to a monodomain structure, with the polarization
in the PbTiO3 layer pointing close to the perovskite unit cell
diagonal (configuration described in detail in Ref. 8 and labeled
as [111] in Fig. 1). This result is consistent with the upturn in
the domain periodicity observed by Zubko and coworkers,31

suggesting that for n < 4 the superlattices enter into the
strong-coupling regime. Nevertheless, the energy difference
between the monodomain and the most stable polydomain
configuration is very small (of the order of 1.6 meV/five-atom
perovskite unit cell, well below the thermal energy at room
temperature), suggesting a close competition between them
for small values of n. A small change on any external

0 2 4 6 8 10 12 14 16 18
Nx

0

2

4

6

8

10

E
ne

rg
y 

(m
eV

)
Nonpolar

Monodomain [0,0,1]

Monodomain [1,1,1]

FIG. 1. Differences in energies between polydomain, mon-
odomain, and nonpolar configurations in (3|3) PbTiO3/SrTiO3

superlattices, as a function of the domain period Nx . Total energies
of supercells are given per five-atom perovskite unit cell. Circles
represent the configurations where the AFD modes are not allowed
(Ny = 1), while squares represent configuration with condensed AFD
modes (Ny = 2). Diamond indicates a configuration where the DW
lies along the ⟨110⟩ direction, also allowing for the condensation
of AFD modes. The monodomain phases have been labeled as in
Ref. 8, where a full analysis of these configurations is provided. In the
nonpolar configuration, the AFD distortions have been considered.
All energies are given with respect to the most stable monodomain
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Domains in PbTiO3/SrTiO3 superlattices:                                      
adopt the closure-domain structure with vortices

PABLO AGUADO-PUENTE AND JAVIER JUNQUERA PHYSICAL REVIEW B 85, 184105 (2012)

FIG. 3. (Color online) Local polarization profile of polydomain
structures in (PbTiO3)n/(SrTiO3)n superlattices with (a) n = 3 and
(b) n = 6. The PbTiO3 and SrTiO3 are depicted as gray and white
regions respectively. Red dashed squares in the SrTiO3 layers mark
the position where antivortices are formed.

As suggested by the experimental results exposed in
Ref. 31, the examination of Fig. 3 reveals that the actual domain
structure in this kind of systems is often an intermediate case
between 180◦ domains and the closure domains commonly
found in ferromagnets, displaying rotation of the polarization
upon approaching the DWs14,38 (although the length scale
over which the polarization rotation takes place is only
a few unit cells in the case of ferroelectrics, in contrast
with the several nanometers or even microns typical of
ferromagnets). However, we have to keep in mind that in ideal
closure domains, the divergence of the polarization vanishes
everywhere and, therefore, the depolarizing field is perfectly
screened. In our simulations, the polarization of the SrTiO3
indicates the presence of a residual depolarizing field and
thus, strictly speaking, our domains do not constitute perfect
domains of closure.

Our results also support the robustness of the rotation of
polarization and the formation of vortices in ferroelectric
nanostructures suggested by previous theoretical studies.
These geometries have been predicted to exist independently of
(i) the used methodology (including first principles,16,39 model
Hamiltonians,40–42 phase field models,43 and phenomeno-
logical Devonshire-Ginzburg-Landau theories35,44), and/or

FIG. 4. (Color online) Schematic view of the (3 | 3) superlattice
with Nx = 12 and Ny = 1 indicating how local values of the
magnitudes plotted in Figs. 5 and 7 are defined. Red (blue) lines
represent local values of in-plane, a, (out-of-plane, c) lattice con-
stants, measured from the in-plane (out-of-plane) distance between
equivalent cations of the same chemical species in consecutive unit
cells along the x (z) direction. Magnitudes with subscript 1 (2)
indicate unit cells centered on a [001] AO (TiO2) atomic plane. Local
polarization is marked with arrows. Black dotted lines indicate the
offset between [100] atomic rows to the left and right of the domain
walls, defined as the relative vertical shift of A-cations in a given
atomic plane. Bracket at the bottom of the up domain indicates the
position of its center, where the values plotted as empty symbols in
Figs. 5 and 7 are obtained. Finally, domain walls are represented by
dashed lines.

(ii) the electrostatic boundary conditions (with metallic16,45

or semiconducting electrodes,41,44 or even in free standing
slabs39,42).

It is remarkable to see that the polarization rotation in the
PbTiO3/SrTiO3 superlattices is mostly due to large in-plane
displacement of the Pb atoms at the PbO layers in the vicinity
of the interface. This contrasts with the predicted domains in
BaTiO3/SrRuO3 capacitors,16 where the in-plane polarization
is due to the displacements of the Sr atoms in the first layer
of the electrode. Here, the Pb atoms move of the order of
0.2 Å, a displacement large enough to be detectable with
the recently developed atomic-resolution aberration-corrected
transmission electron microscopy. Using this technique,
polarization rotation at DWs have been experimentally ob-
served in ferroelectric thin films with thicknesses of a few
tens of unit cells.19,20 However the high quality level achieved
during the last years in the growth of short-period superlattices,
together with the large in-plane displacements predicted, make
this kind of system particularly suited for the observation of
the formation of vortices at domain walls in ultrathin films,
comparable in size to the simulated systems listed above.

Interestingly, within the SrTiO3 layer and close to the
DW, we do observe the formation of antivortices; a local
polarization pattern where two dipoles point face to face and
two tail to tail (see red dashed squares in Fig. 3). (These
antivortices have also been recently predicted to form in
epitaxial BiFeO3 films.46)
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Complex polarization textures in 
ferroelectric nanostructures
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Both a vortex and a polarization
aligned along the normal of the

plane containing the vortex
BaTiO3 nanowires embedded

in a SrTiO3 matrix

The whole system is chiral
Y. Nahas et al. 

Nat. Commun. 6, 8542 (2015)

Discovery of stable skyrmion
states in ferroelectric

nanocomposites
BaTiO3 nanowires embedded

in a SrTiO3 matrix

The topological invariance of nontrivial field structures such
as vortices and skyrmionic configurations against fluctua-
tions and deformations triggers considerable interest for

device applications1,2. Many advances have been achieved in
predicting their formation and characterizing the emergent order
they subtend in magnetic systems3,4. Whereas vortex
configurations, or related flux-closure configurations, have
already been revealed in ferroelectrics (FE) within nanoscale
geometries (see, for example, refs 5–13 and references therein),
the search for a spontaneous formation of skyrmionic textures in
FEs was somewhat hindered by the absence of intrinsic chiral
interactions that are known to stabilize such configurations in
non-centrosymmetric magnetic systems14–16. However, it is now
unequivocal that such interactions are not a prerequisite for
obtaining skyrmionic topological patterns17, as non-coplanar
swirling field structures have been amply predicted and observed
in magnets that do not meet the conditions typically deemed
necessary18–20.

Recognizing in this lifted restriction a breach for probing
skyrmions in ferroelectric materials, we build on the topology of
the polarization field in confined geometries and show here, via
the use of a first-principles-based technique, that nanoscale
structures can readily become the locus of skyrmionic configura-
tion of polarization. We also demonstrate that the field-induced
skyrmionic texture is thermodynamically stable against electric
and thermal perturbations. We further find that its topological
charge density markedly differs from that of axisymmetric
magnetic skyrmion textures in that it is broken into equally
contributing fractions anchored at domain walls junctions. Our
finding therefore unravels the interplay between geometry and
topology in stabilizing extrinsically protected skyrmionic config-
uration, and brings to the fore the possibilities of extending
skyrmion-based devices to ferroelectrics.

Results
Confined nanocomposite geometry. We choose to focus on a
ferroelectric nanocomposite consisting of a cylindrical BaTiO3
(BTO) nanowire with a radius of 2.7 nm embedded in a SrTiO3
(STO) matrix in our search for electrical skyrmion. The choice of
such a nanostructure is motivated by the advancement in the
controlled growth of composites with tailored functionalities21,
and the wide variety of novel behaviours they feature (note,

however, that the growth of low-dimensional perovskites inside a
perovskite matrix remains a difficult task to experimentally
achieve). A primarily relevant topological feature of this type of
nanocomposites is the occurrence of a size-induced chiral
symmetry breaking, which stabilizes a vortex domain structure
coexisting with a spontaneous polarization along the axial
direction of the nanowire10. The investigated ferroelectric
structure is schematized in Fig. 1a. This nanocomposite is
mimicked by a 36! 36! 6 supercell that is periodic along the x, y
and z axis (which lie along the pseudocubic [100], [010] [001]
directions, respectively). Its properties are predicted by
performing Monte Carlo simulations of the first-principles-
based effective Hamiltonian scheme of ref. 22.

Electric field treatment. The creation of an electrical skyrmion is
presently achieved by a numerical procedure consisting of the
following few steps. We first perform a temperature annealing
under an external electric field, E[001]¼ 108 V m# 1, applied
along the pseudocubic [001] direction. On reaching 15 K,
we set the field to zero and further relax the priorly obtained
low-temperature configuration. The resulting relaxed configura-
tion features a spontaneous polarization along the axial direction
of the nanowire, co-occurring with a flux-closure four-domain
vortex structure of the cross-sectional polarization field, in-plane
pattern whereby the strength of the depolarization field is
reduced23. More precisely, we find that the (1–3) Newnham’s
connectivity24 (BTO phase is one-dimensionally connected and
the STO phase is three-dimensionally connected) of the
considered nanocomposite structure hosts a polarization state
possessing translational invariance along the axial direction of the
wire. The polarization field thus depends only on x and y spatial
coordinates, enabling a visualization of the system as consisting of
two-dimensional layers (z-planes). The corresponding cross-
sectional polarization field is shown in Fig. 1b, which displays the
x and y components of the electric dipoles in an arbitrary (001)-
plane of the shifted periodic supercell. This state will be referred
to as (Vxy|FEz) in the following, to emphasize that it has a vortex
state in the z-planes but also possesses an electrical polarization
along the [001] direction. The distribution of the latter as a
function of x and y spatial coordinates is such that that local
dipoles within the wire have a z-component around 30% larger in
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Figure 1 | Schematic representation of the structure and dipolar configuration of the vortex state. (a) Schematic representation of the periodic supercell
under study. The structure consists of a cylindrical BaTiO3 (BTO) nanowire with a radius R of 2.7 nm (seven lattice constant units) embedded in a SrTiO3

(STO) matrix with lateral sides along the [100] and [010] directions of nx¼ ny¼ 36 lattice constant units, and a length nz¼6 along the [001] pseudocubic
direction. (b) Cross-sectional dipolar configuration of the (Vxy|FEz) state characterized by a vortex pattern in the z-planes co-occurring with an electrical
polarization along the [001] direction. Arrows correspond to the x and y-components of the electric dipoles in an arbitrary (001)-plane of the shifted
periodic supercell. Blue and red circles specify the location of vortices and antivortices respectively, all occurring at the intersection of DWx and DWy

domain walls (dashed lines) separating different configurations of the x and y components of polarization.
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radius R of the cylindrical wire. With increasing radii of BaTiO3
nanowires, E* was found to increase, merely indicating the
relatively empowered influence of the wire on the matrix as a
result of its enlargement. Moreover, we found that considering a
rectangular array of cylindrical wires within the supercell
endowed the resulting skyrmion lattice with helicity Z2ð Þ degrees
of freedom (the circulation direction of the cross-sectional
polarization around the skyrmion core); depending on the
inter-wire distances, the interaction between skyrmions led to
either a single-chirality (phase-locking) pattern or to an alternate
arrangement of skyrmionic chiralities within this lattice. We also
note that skyrmion-like configurations should exist in other
geometries than the nanocomposite structure herein investigated,
provided that similar physics comes into play31. Moreover, free
charges and structural defects can screen or modify depolarizing
field and thus affect the formation of electrical skyrmions.
However, we are confident that these latter topological
defects will soon be observed based on the fact that other
depolarizing-field-related dipolar patterns have already been
experimentally seen in some ferroelectric systems (see, for
example, refs 9–13).

In conclusion, we have shown that ferroelectric nanocompo-
sites can accommodate a skyrmionic configuration as a stable
state of polarization. Our study brings to the fore the interplay
between geometry and topology in providing extrinsic topological
protection. Finally, analysing the (Sk) topological properties, we
found that its topological charge density is broken into fractions
pinned at domain walls junctions, thereby singling out electrical
skyrmions from topological objects with axisymmetric topological
charge densities.

Methods
Effective Hamiltonian. The effective Hamiltonian employed in this study is that of
ref. 22. Its total internal energy has the form:

Etot ¼ Eave uif g; vif g; ZHf gð Þ
þEloc uif g; vif g; sj

! "
; Zlocf g

# $
:

ð1Þ

The first energy term, Eave, depends on the local soft mode ui centred on the
Ti-sites of the 5-atom unit cell i and directly proportional to the electric dipole
moment of the corresponding unit cell, the dimensionless displacement variables
{vi} defined at the cell corners and entering in the calculation of the
inhomogeneous strain tensor components of the cell i32,33, and the homogeneous
strain tensor {ZH}, which allows the simulations to account for the change in size
and shape of the supercell32,33. Eave consists of five parts: a local-mode self-energy,
a long-range dipole-dipole interaction, a short-range interaction between soft
modes, an elastic energy, and an interaction between the local modes and local
strain32,33. Its parameters are fitted from first-principles calculations performed on
a uniform virtual hAiTiO3 system that averages the potentials of the pure parent
compounds34,35 to model (Ba0.5Sr0.5)TiO3 solid solutions. The second energy term,
Eloc, involves the {sj} parameters and {Zloc}, which respectively correspond to the
set of variables {sj} characterizing the atomic distribution of the mixed
A-sublattice36, with sj¼ þ 1 or % 1 corresponding to the presence of either Ba or
Sr atom at the A-lattice site j, and the local strain {Zloc} stemming from the
difference in ionic radii between Ba and Sr atoms (which is ’ 2 % ). This second
energy term Eloc stands as a perturbative correction to the virtual crystal
approximation, as it accounts for the real nature of the A-site atom and its effect on
the local soft modes and the inhomogenuous strain tensor, as well as it includes
corrections pertaining to the strain induced by the size difference between Ba and
Sr ions22. The parameters entering in Eloc are derived from first principles. The
nanocomposite herein considered is stress-free, which allows the matrix, interface
and wires to adopt different lattice constants, thereby modelling a (realistic)
inhomogeneous strain. The Monte Carlo simulations were performed using up to
50,000 sweeps.

It is worth mentioning that the above described first-principles-based effective
Hamiltonian scheme22 has been shown to accurately reproduce various (static and
dynamical) properties of different disordered or chemically ordered (Ba,Sr)TiO3
systems22,37–40. One example includes Curie temperatures and phase diagrams22 of
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Figure 4 | Stability of the skyrmionic state. (a) Polarization field configuration within the relaxed skyrmionic state (Sk) as obtained from the simulation at
15 K. (b) Local dipoles plotted along a line passing through the skyrmion’s core and parallel to the x coordinate axis. It is seen that the tips of the dipoles
describe a circle in the plane perpendicular to the line, thus indicating the variation of the y and z components along this line. The vectors are coloured
according to their z-component in a,b. (c) Dependence of the internal energy de on the Pz component of polarization showing the crossover between two
stable minima: the one corresponding to the (Vxy|FEz) state characterized by a vortex pattern in the z-planes co-occurring with an electrical polarization
along the [001] direction, and the one associated with the skyrmionic texture (Sk). Error bars indicate s.d. (d) Temperature dependence of the estimated
threshold external electric field E* needed to drive the system towards the skyrmion state.
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We present a first-principles-based (second-principles) scheme that permits large-scale materials simulations
including both atomic and electronic degrees of freedom on the same footing. The method is based on a predictive
quantum-mechanical theory—e.g., density functional theory—and its accuracy can be systematically improved
at a very modest computational cost. Our approach is based on dividing the electron density of the system
into a reference part—typically corresponding to the system’s neutral, geometry-dependent ground state—and a
deformation part—defined as the difference between the actual and reference densities. We then take advantage
of the fact that the bulk part of the system’s energy depends on the reference density alone; this part can be
efficiently and accurately described by a force field, thus avoiding explicit consideration of the electrons. Then,
the effects associated to the difference density can be treated perturbatively with good precision by working in a
suitably chosen Wannier function basis. Further, the electronic model can be restricted to the bands of interest.
All these features combined yield a very flexible and computationally very efficient scheme. Here we present
the basic formulation of this approach, as well as a practical strategy to compute model parameters for realistic
materials. We illustrate the accuracy and scope of the proposed method with two case studies, namely, the relative
stability of various spin arrangements in NiO (featuring complex magnetic interactions in a strongly-correlated
oxide) and the formation of a two-dimensional electron gas at the interface between band insulators LaAlO3 and
SrTiO3 (featuring subtle electron-lattice couplings and screening effects). We conclude by discussing ways to
overcome the limitations of the present approach (most notably, the assumption of a fixed bonding topology), as
well as its many envisioned possibilities and future extensions.
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I. INTRODUCTION

Over the past two decades first-principles methods, in par-
ticular those based on efficient schemes like density functional
theory (DFT) [1–5], have become an indispensable tool in
applied and fundamental studies of molecules, nanostructures,
and solids. Modern DFT implementations make it possible
to compute the energy and properties (vibrational, electronic,
magnetic) of a compound from elementary information about
its structure and composition. Hence, in DFT investigations
the experimental input can usually be reduced to a minimum
(the number of atoms of the different chemical species, and
a first guess for the atomic positions and unit cell lattice
vectors). Further, the behavior of hypothetical materials can
be readily investigated, which turns the methods into the
ultimate predictive tool for application, e.g., in materials
design problems.

However, interpreting or predicting the results of experi-
ments requires, in many cases, to go beyond the time and length
scales that the most efficient DFT methods can reach today.
This becomes a very stringent limitation when, as it frequently
happens, the experiments are performed in conditions that are
out of the comfort zone of DFT calculations, i.e., at ambient
temperature, under applied time-dependent external fields, out
of equilibrium, under the presence of (charged) defects, etc.

The development of efficient schemes to tackle such
challenging situations, which are of critical importance in
areas ranging from biophysics to condensed matter physics

and materials science, constitutes a very active research field.
Especially promising are QM/MM multiscale approaches in
which different parts of the system are treated at different levels
of description: The most computationally intensive methods
[based on quantum mechanics (QM), as for example DFT
itself] are applied to a region involving a relatively small
number of atoms and electrons, while a large embedding region
is treated in a less accurate molecular mechanics (MM) way
(e.g., by using one of many available semiempirical schemes).

Today’s multiscale implementations tend to rely on
semiempirical methods—like tight-binding [6,7] and force-
field [8,9] schemes—that were first introduced decades ago.
In some cases, such schemes are designed to retain DFT-
like accuracy and flexibility as much as possible. One rele-
vant example are the self-consistent-charge density-functional
tight-binding (DFTB) techniques [10–12], and related ap-
proaches [13–15], which retain the electronic description and
permit an essentially complete treatment of the compounds.
Another relevant example are the effective Hamiltonians
developed to describe ferroelectric phase transitions and other
functional effects [16–18]; these are purely lattice models
(i.e., without an explicit treatment of the electrons) based
on a physically-motivated coarse-grained representation of
the material, and have been shown to be very useful even
in nontrivial situations involving chemical disorder [19] and
magnetoelectric effects [20], among others. Such methods
have demonstrated their ability to tackle many important
problems (see, e.g., Refs. [15,21–23] for the DFTB approach),

2469-9950/2016/93(19)/195137(28) 195137-1 ©2016 American Physical Society



Accurate model potential to describe 
the lattice-dynamical properties

A tight-binding like approach to 
describe the relevant electronic 

degrees of freedom
+

J. Phys.: Condens. Matter 25 (2013) 305401 J C Wojdeł et al

Figure 4. Left: dispersion bands of cubic PbTiO3, as calculated
from first principles (lines) and obtained from our effective model
(circles). The bands correspond to the eigenvalues �

qj of the
Fourier-transformed force-constant matrices K

(2)
q

, which we call
stiffness coefficients. The leading structural instabilities are labeled;
they involve ferroelectric (FE) and antiferrodistortive (AFD)
motions such as those sketched in figure 5. The color code indicates
the dominant atomic character of the K

(2)
q

eigenvectors. Right:
density-of-states (DOS) plots constructed from the K

(2)
q

eigenvalues,
as obtained from first-principles simulations using a very fine q

point mesh, and from our effective potential by solving the
eigenmode problem for an 8 ⇥ 8 ⇥ 8 supercell and making use of a
simple interpolation between the computed eigenvalues.

Figure 5. Sketch of the atomic displacements corresponding to the
most important structural instabilities in ABO3 perovskite oxides.
(a) Ferroelectric (FE) instability. The subscript in FEz labels the
polar direction. (b) Antiferrodistortive (AFD) instability with
neighboring O6 octahedra along the z direction rotating in-phase
(distortion associated with the M q-point of the cubic Brillouin
zone). (c) The same as in (b), but with octahedral rotations
modulated in antiphase along z (R-point distortion). The subscript
and superscript in the notation for the AFD modes label,
respectively, the direction of the rotation axis and the in-phase or
antiphase modulation of the rotations along that axis.

As regards the anharmonic terms, one could try a similar
direct calculation of each one of the parameters. For example,
to compute the strain–phonon couplings ⇤(1,2), one could run
DFPT calculations for the RS subject to a small strain �⌘.
The resulting force-constant matrix would be described in our
model by

K(2)
i↵j�

����
�⌘

= K(2)
i↵j� +

X

a
3

(1,2)
ai↵j��⌘a, (31)

which would allow us to calculate the targeted couplings.
Following a similar scheme—e.g., by running DFPT

calculations of distorted configurations in which some atomic
displacements are frozen in—one could access the parameters
in Eanh.

As described below, we tried such an approach when
constructing our models for PbTiO3 and SrTiO3, specifically
as regards the strain–phonon couplings. Based on our
experience, we believe that such a systematic scheme may
render accurate potentials in relatively simple cases, i.e.,
whenever the RS does not present structural instabilities. On
the other hand, in the challenging situations here considered,
this strategy may be impractical if a very precise description
of some PES features is targeted. Indeed, we found that
the PES of materials like PbTiO3 or SrTiO3 is strongly
anharmonic; more precisely, if we aimed at an accurate
description of the whole PES connecting the RS with the
lower-energy phases, we would need to consider a Taylor
series extending up to a rather high order. In such cases
it seems more convenient to adopt an effective approach,
aiming at reproducing the PES only around the RS and
the most relevant low-energy structures. This permits a
lower-order expansion that quantitatively captures the main
effects and retains much of the physical transparency of
the simpler (effective-Hamiltonian and phenomenological)
models traditionally used to investigate phase transitions,
which include only as many terms as strictly needed for a
qualitatively correct description.

2.3.2. Parameters fitted to first-principles results. To com-
pute the higher-order couplings of our effective potentials—
i.e., e

K

(n) with n > 2 and e⇤(m,n) with m + n > 2—it
is convenient to implement a fitting procedure aimed
at obtaining a model that reproduces a training set of
first-principles results. Here, we describe the strategy we
adopted in our work with PbTiO3 and SrTiO3, where the
training set was composed of low-energy structures that are
more stable than the RS, and the key properties that we request
our models to capture are energy differences and equilibrium
atomic configurations. Nevertheless, the ideas presented are
rather general and can be easily adapted to other situations.

In essence, our parameter-optimization calculations were
based on three goal functions defined in the following way.
Let the superindex s number the structures ({us

i }, ⌘s) in
our training set. First, to get our model to reproduce the
first-principles energies {Es}, we considered the goal function

G F E(P) =
X

s

⇥
Eeff[P]({us

i }, ⌘s) � Es⇤2
, (32)

where P represents all the free adjustable coefficients in
the model and the parametric dependence of Eeff on P is
indicated. Second, all the structures in our training sets were
stationary points of the PES (minima or saddles). Hence, we
imposed the zero-gradient condition for such structures by
minimizing the goal function

G F rE(P) =
X

s

��rEeff[P]({us
i }, ⌘s)

��2
, (33)

where the gradient includes derivatives with respect to both
atomic distortions and cell strains. Finally, aiming at an
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We present a first-principles-based (second-principles) scheme that permits large-scale materials simulations
including both atomic and electronic degrees of freedom on the same footing. The method is based on a predictive
quantum-mechanical theory—e.g., density functional theory—and its accuracy can be systematically improved
at a very modest computational cost. Our approach is based on dividing the electron density of the system
into a reference part—typically corresponding to the system’s neutral, geometry-dependent ground state—and a
deformation part—defined as the difference between the actual and reference densities. We then take advantage
of the fact that the bulk part of the system’s energy depends on the reference density alone; this part can be
efficiently and accurately described by a force field, thus avoiding explicit consideration of the electrons. Then,
the effects associated to the difference density can be treated perturbatively with good precision by working in a
suitably chosen Wannier function basis. Further, the electronic model can be restricted to the bands of interest.
All these features combined yield a very flexible and computationally very efficient scheme. Here we present
the basic formulation of this approach, as well as a practical strategy to compute model parameters for realistic
materials. We illustrate the accuracy and scope of the proposed method with two case studies, namely, the relative
stability of various spin arrangements in NiO (featuring complex magnetic interactions in a strongly-correlated
oxide) and the formation of a two-dimensional electron gas at the interface between band insulators LaAlO3 and
SrTiO3 (featuring subtle electron-lattice couplings and screening effects). We conclude by discussing ways to
overcome the limitations of the present approach (most notably, the assumption of a fixed bonding topology), as
well as its many envisioned possibilities and future extensions.
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I. INTRODUCTION

Over the past two decades first-principles methods, in par-
ticular those based on efficient schemes like density functional
theory (DFT) [1–5], have become an indispensable tool in
applied and fundamental studies of molecules, nanostructures,
and solids. Modern DFT implementations make it possible
to compute the energy and properties (vibrational, electronic,
magnetic) of a compound from elementary information about
its structure and composition. Hence, in DFT investigations
the experimental input can usually be reduced to a minimum
(the number of atoms of the different chemical species, and
a first guess for the atomic positions and unit cell lattice
vectors). Further, the behavior of hypothetical materials can
be readily investigated, which turns the methods into the
ultimate predictive tool for application, e.g., in materials
design problems.

However, interpreting or predicting the results of experi-
ments requires, in many cases, to go beyond the time and length
scales that the most efficient DFT methods can reach today.
This becomes a very stringent limitation when, as it frequently
happens, the experiments are performed in conditions that are
out of the comfort zone of DFT calculations, i.e., at ambient
temperature, under applied time-dependent external fields, out
of equilibrium, under the presence of (charged) defects, etc.

The development of efficient schemes to tackle such
challenging situations, which are of critical importance in
areas ranging from biophysics to condensed matter physics

and materials science, constitutes a very active research field.
Especially promising are QM/MM multiscale approaches in
which different parts of the system are treated at different levels
of description: The most computationally intensive methods
[based on quantum mechanics (QM), as for example DFT
itself] are applied to a region involving a relatively small
number of atoms and electrons, while a large embedding region
is treated in a less accurate molecular mechanics (MM) way
(e.g., by using one of many available semiempirical schemes).

Today’s multiscale implementations tend to rely on
semiempirical methods—like tight-binding [6,7] and force-
field [8,9] schemes—that were first introduced decades ago.
In some cases, such schemes are designed to retain DFT-
like accuracy and flexibility as much as possible. One rele-
vant example are the self-consistent-charge density-functional
tight-binding (DFTB) techniques [10–12], and related ap-
proaches [13–15], which retain the electronic description and
permit an essentially complete treatment of the compounds.
Another relevant example are the effective Hamiltonians
developed to describe ferroelectric phase transitions and other
functional effects [16–18]; these are purely lattice models
(i.e., without an explicit treatment of the electrons) based
on a physically-motivated coarse-grained representation of
the material, and have been shown to be very useful even
in nontrivial situations involving chemical disorder [19] and
magnetoelectric effects [20], among others. Such methods
have demonstrated their ability to tackle many important
problems (see, e.g., Refs. [15,21–23] for the DFTB approach),
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In plane polarization in FE domains

The domain walls might be ferroelectric themselves

DWs couple, and tend to align in a parallel configuration
when the walls are sufficiently close. However, the
DW–DW interaction quickly decreases with the separation
distance; for example, for our 12 × 12 × 20 supercell, the
energy split between the parallel and antiparallel states is
about 0.01 meV per DW cell, which is negligible. Hence,
the antiparallel configuration shown in Fig. 1 is a stable
state (i.e., a local minimum of the energy), but not more
significant than the also stable, quasidegenerate parallel
configuration.
Our results show how strain and the reduced dimension-

ality determine the energetics of the DW-confined FE
distortion. The onset of the multidomain structure for Px
implies a strong deformation of the perovskite lattice: it
becomes tetragonal and acquires an aspect ratio of 1.07, the
long lattice vector coinciding with the polar axis x. In the
case of our simulated system, the xy plane is homo-
geneously strained throughout the supercell (stretched
along x, shrunk along y). Hence, even if we have
Px ¼ 0 at the DWs of Fig. 1, the strain disfavors the
occurrence of a DW polarization along the y direction,
which is subject to a compression. The ensuing effect can
be appreciated in the potential wells of Fig. 2(b): Case I
corresponds to the full development of the FE distortion of
PTO, as it happens within the domains. Case II corresponds
to the development of a three-dimensional y-polarized state
when we constrain the cell to be strained as in the
x-polarized FE state; the equilibrium polarization and
associated energy gain get clearly reduced, and we obtain
a value of Py (about 0.75 C=m2) that is not far from
our result at the DW center (about 0.65 C=m2).
Additionally, Fig. 2(b) shows a case III corresponding to

the condensation of Py at our DWs; the energy well
becomes shallower than in case II, indicating a further
weakening of the polar instability caused by the spatial
confinement (i.e., by the truncation of interactions favoring
the three-dimensional homogeneous polar state) and the
competition with the Px distortion of the neighboring
domains. Nevertheless, the obtained well depth
(86 meV=cell) is sizable, which suggests that the predicted
DW instability should occur at relatively high temperatures.
We checked the correctness of our model-potential

predictions by running direct first-principles calculations
of our multidomain structure, using a 1 × 1 × 20 cell. As
shown in Figs. 1(b) and 1(c), the agreement between our
model-potential and first-principles results is very good,
and the FE character of PTO’s DWs is confirmed [30]. We
should note that there are several first-principles studies of
the 180° DWs of PTO in the literature [18,31–33], and the
consensus is that no DW-confined polarization occurs.
We cannot be sure about the reasons why these previous
works did not find polarized DWs; some possibilities are
discussed in [29].
We checked whether this confined polarization occurs in

other PTO DWs. We found that 180° DWs lying in other
planes—e.g., a (011) boundary separating domains with
PI∥½100# and PII∥½1̄00#—present polar distortions analo-
gous to the one just described. In contrast, we found that
90° DWs do not present any FE instability, a result probably
related with the fact that these boundaries are considerably
more distorted than their 180° counterparts, or to the elastic
(epitaxial tensile) constraints we had to impose in order
to stabilize them. PTO’s 90° DWs will be discussed
elsewhere.

(a)
(b)

(d)

(c)

FIG. 1 (color online). Panel (a): Sketch of the supercell used in our simulations. The indicated Cartesian axes coincide with the
principal directions of the perovskite lattice. Panels (b) and (c): Polarization profile corresponding to the stable structure of our
multidomain configuration. (Calculation of local polarizations described in Ref. [29].) The “PBEsol (I)” lines show the results of an
unconstrained first-principles structural relaxation [29]; the agreement with the model predictions is essentially perfect for the Px profile;
for the DW polarization we obtain a slightly smaller value. The “PBEsol (II)” lines show the results of a first-principles relaxation in
which the supercell lattice parameters were fixed to match those predicted by our model potential; the agreement for the Py profile is
essentially perfect; for the polarization within the domains we get slightly larger values. Panel (d): Views of the atomic structure of our
multidomain configuration.
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We present a first-principles study of model domain walls (DWs) in prototypic ferroelectric PbTiO3. At
high temperature the DW structure is somewhat trivial, with atoms occupying high-symmetry positions.
However, upon cooling the DW undergoes a symmetry-breaking transition characterized by a giant
dielectric anomaly and the onset of a large and switchable polarization. Our results thus corroborate
previous arguments for the occurrence of ferroic orders at structural DWs, providing a detailed atomistic
picture of a temperature-driven DW-confined transformation. Beyond its relevance to the field of
ferroelectrics, our results highlight the interest of these DWs in the broader areas of low-dimensional
physics and phase transitions in strongly fluctuating systems.
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The structural domain walls (DWs) occurring in ferro-
electric (FE) and ferroelastic (FS) materials have become a
focus of attention. Recent studies show that the DWs can
present a variety of properties, from conductive [1–4] and
optical [5,6] to magnetic [7–9], that differ from those of the
neighboring domains, which suggests that they could be the
active element in nanotechnological applications [10,11].
Elucidating the DW behavior poses major experimental
challenges, and the origin of most of the newly discovered
effects remains unclear. In fact, we still lack a detailed
structural and dynamical picture of the DWs, and in many
cases we can only speculate about the structure–property
relationships at work within them. Hence, there is a
pressing need for predictive theoretical studies tackling
the DWs at an atomistic level and at the relevant conditions
of temperature, etc.
The DW structure, and even the possible occurrence of

DW-confined ferroic orders, have been discussed theoreti-
cally for decades, usually in the framework of continuum
Ginzburg-Landau or phenomenological model theories
[12–22]. Materials with competing structural instabilities
have been a focus of attention, a good example being
perovskite SrTiO3 (STO). STO undergoes a FS transition
driven by an antiferrodistortive (AFD) mode that involves
concerted rotations of the O6 octahedra in the perovskite
structure. This mode competes with a FE instability that is
suppressed by the onset of the AFD distortion [23]. Yet,
there are both theoretical and experimental indications that
a polar order occurs at low temperatures within STO’s FS
DWs [16,24–26], i.e., in the region where the otherwise
dominant AFD distortions vanish. In this context, it is
worth noting recent first-principles studies predicting that
PbTiO3 (PTO) [27] and related compounds [28] present a
FE-AFD competition that is even stronger than the one
occurring in STO. These are the ideal conditions to obtain
interesting effects at structural DWs, and motivated
this work.

Low-temperature study.—We employed the tools of
Ref. [27], which permit large-scale simulations with
first-principles predictive power, to investigate an ideal
version of the simplest DWs occurring in PTO, namely,
180° boundaries separating regions of opposed polarization
and being perfectly planar. We used the model potential for
PTO labeled “LI” [27], which we briefly describe in [29].
As shown in Fig. 1(a), we set the polarization of the first
domain PI parallel to the [100] direction of the perovskite
lattice, and took PII∥½1̄00" for the second one; the DW in
between was assumed to reside in a (001) plane. Our
supercell, which contains 12 × 12 × 20 perovskite units
(14400 atoms), is periodically repeated and holds
two DWs.
We investigated the ground state structure of this multi-

domain configuration by means of Monte Carlo (MC)
simulated annealings [29]. Figure 1(b) shows the x com-
ponent of the polarization (Px) as we move along z. We
observe two domains within which PTO adopts the
structure of its homogeneous ground state, with an asso-
ciated polarization of about 0.99 C=m2 and a cell aspect
ratio of about 1.07. The domains are separated by a DW
centered at a PbO plane and presenting a thickness of about
one unit cell.
Our DWs do not display any rotations of the O6

octahedra. This result lends itself to a simple explanation:
Because the DWs are ultrathin, hypothetical DW-localized
AFD modes would overlap with the neighboring FE
distortions and thus be penalized by the FE-AFD com-
petition. As a result, the absence of localized AFD modes
seems rather natural.
Nevertheless, the structure of the DWs is far from being

trivial. As shown in Fig. 1(c), a nonzero Py polarization
appears at the DW plane and rapidly vanishes as we move
into the domains. This DW polarization is switchable, as
evidenced by the hysteresis loop in Fig. 2(a). Further
calculations show that the polarizations of neighboring
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In plane polarization in FE domains
Rich structure predicted in (111) BaTiO3 domain walls 
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FIG. 4. (Color online) Profiles of Pr,Pt, and Ps polarization
components along the [100] direction as obtained from phase-field
simulations for rhombohedral BaTiO3 at 118 K using the model
described in the text. Data are taken from the front face of the
simulation box (a) at the trajectory 1 and (b) at trajectory 2 shown
in Fig. 2(d) and (c) at the intermediate trajectory passing through the
Ising lines.

PDW really vanishes. This strongly contrasts with analogical
line defects known from ferromagnetism. The reason for this
difference is obviously the importance of the electrostatics;
a ferroelectric Néel line would be strongly penalized by
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FIG. 5. (Color online) Profiles of the Pr,Pt, and Ps polarization
components within a selected Bloch wall (along the r ∥ [111]
direction) corresponding to (a) the virgin state and (b) the partially
switched (b) state. These two states correspond to points A and
B on (c) the quasistatic hysteresis loop, demonstrating switching
of the domain-wall polarization PDW by the electric field applied
along the t ∥ [01̄1] direction. Results were obtained from phase-field
simulations at 118 K using 128 × 128 × 128 simulation box with a
spatial step of 0.5 nm.

the associated local depolarization field [36]. However, this
penalty is less prohibitive than that of the 2D Néel wall,
and in principle, the ferroelectric Néel line may exist in
some ferroelectric materials. It is likely that Ising-to-Néel or
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Ising lines: Natural topological defects within ferroelectric Bloch walls
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Phase-field simulations demonstrate that the polarization order-parameter field in the Ginzburg-Landau-
Devonshire model of rhombohedral ferroelectric BaTiO3 allows for an interesting linear defect, stable under
simple periodic boundary conditions. This linear defect, here called the Ising line, can be described as an
about 2-nm-thick intrinsic paraelectric nanorod acting as a highly mobile borderline between finite portions of
Bloch-like domain walls of opposite helicity. These Ising lines play the role of domain boundaries associated
with the Ising-to-Bloch domain-wall phase transition.

DOI: 10.1103/PhysRevB.92.094106 PACS number(s): 77.80.Dj, 77.84.−s

I. INTRODUCTION

Perovskite ferroelectrics are the key materials in current
ferroelectric research, and a considerable effort was recently
devoted to investigations of their domain structure and their
domain-wall properties. Much less is known about ferroelec-
tric line defects, although this topic is now gaining attention
[1–11], for example, in relation to magnetic vortices and
skyrmions [1,2]. Ferroelectric domains and line defects are
inspiring in other research areas, too, for example, in the
particle physics [12].

Here we demonstrate that perovskite ferroelectrics like
BaTiO3 may contain an interesting linear defect, analogous
to the edge dislocation lines of crystal lattices and twist
disclination lines of liquid-crystal textures [13,14] but related
to the vectorial field of the spontaneous polarization. It is
similar to magnetic Bloch and Néel lines [15–18], but the
ferroelectric line obtained here has a vanishing polarization at
the axis of its core (see Fig. 1). Therefore, we will denote the
specific defect studied here as an Ising line.

This Ising line is ultimately related to the existence of
ferroelectric Bloch walls, recently inferred from phenomeno-
logical [19–22] and first-principles calculations [23,24] for
BaTiO3 and PbTiO3. In particular, within the Ginzburg-
Landau-Devonshire (GLD) model of Refs. [25,26], the Bloch-
like (bistable and chiral) structure of the [2̄11]-oriented 180◦

domain wall of rhombohedral BaTiO3 has been demonstrated
[19,22]. Moreover, this wall can be transformed to an
achiral, Ising-like domain wall, for example, by moderate
uniaxial stress [21]. The transformation proceeds as a con-
tinuous, symmetry-breaking phase transition associated with
a divergence of the dielectric permittivity [27] and with a
disappearance of the polarization PDW within the domain-wall
interior [21]. The “internal” polarization PDW of the Bloch
wall between domains with spontaneous polarization parallel
and antiparallel to the [111] direction is parallel or antiparallel
to the [01̄1] direction (we refer to the cubic axes of the parent
phase; see Fig. 2).

In light of these findings, we expect that the simple array
of 180◦ Ising walls depicted in Fig. 2(a) is unstable at ambient
pressure. In phase-field simulations, a minor perturbation
typically transforms the structure of Fig. 2(a) into an array

*hlinka@fzu.cz

of Bloch walls, for example, the one in Fig. 2(b), where
the PDW vector has opposite orientation within neighboring
domain walls [21]. Such a domain structure contains only
the domain walls of the same helicity, and it is thus a chiral
structure as a whole, but there are no defect lines there.
Obviously, it can be anticipated that the antiparallel PDW states
could coexist within the same domain-wall plane, similar
to how the ferroelectric domains may coexist in the bulk
ferroelectric crystal [22,28–30]. Then, soliton-like line defects
with a characteristic profile may form at the borderline between
domain-wall regions of opposite helicity, similar to how the
Bloch or Néel lines may form within magnetic Bloch walls
[22,30].

Here we report a domain structure with equal left-handed
and right-handed areas within each Bloch-wall plane, which
is numerically stable in the standard phase-field GLD sim-
ulations for BaTiO3. This racemic structure, depicted in the
Figs. 2(d)–2(f), indeed comprises a set of Ising lines, such as
that in Fig. 1. The aim of this paper is to describe their basic
properties.

II. PHASE-FIELD SIMULATIONS

The present phase-field simulations employed a phe-
nomenological GLD energy functional complemented by
exact calculation of the long-range electrostatic energy as-
sociated with the inhomogeneous profile of the polarization
field [31]. The local mechanical equilibrium and strain com-
patibility are implicitly imposed by the method [31]. Further
details about the phase-field approach in ferroelectrics can
be found in Refs. [6,26,32–34]. In the results displayed here,
we used the same GLD model parameters for BaTiO3 as in
Ref. [21]. The adjustable temperature parameter of the model
was set to 118 K, but similar results were obtained at other
temperatures within the stability range of the rhombohedral
ferroelectric phase. Periodic boundary conditions were applied
to both polarization and strain fields. Furthermore, the overall
stress-free conditions were assumed (stress averaged over the
periodic supercell is vanishing). The calculation was typically
conducted on a 128 × 128 × 128 discrete mesh with 0.5-
or 0.25-nm spatial steps. This allows us to inspect local
polarization vectors at the scale of the perovskite elementary
unit-cell parameter (see Fig. 3).

The initial configuration had a steplike polarization seed
profile in which polarization directions roughly conform to that

1098-0121/2015/92(9)/094106(6) 094106-1 ©2015 American Physical Society
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Second-principles simulations of 
(PbTiO3)n/(SrTiO3)n superlattices (n=10)



Chirality of simulated three-dimensional 
electrical polarization configuration

P. Shafer, P. García-Fernández et al. submitted

Three orthogonal reflections of 
the original vortex supercell

The reflected images all map 
onto one another 

BUT 
cannot be mapped onto the 

original structure by any 
combinations of rotations 

and/or translations

They are chiral enantiomers



A handedness can be defined

P. Shafer, P. García-Fernández et al. submitted

Two of the structures are 
chiral enantiomers
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Helicity

Helicity density concentrated 
at vortex cores

The handedness of a given vortex can be 
characterized by the sign of the helicity
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Within the central PbTiO3 layers of the chiral vortex 
arrays, the electric polarization forms a helical struc

Each TiO6 unit provides a a contribution to the x-ray scattering 
amplitude that varies with polarization orientation 



The chiral helical structure imparts a chiral 
structure factor onto the scattering amplitude

Near resonant transitions, the x-rays are sensitive to the 
anisotropic electronic structure of the distorted TiO6 octahedra

Mirrored diffraction vectors detect opposite 
rotational patterns in chiral textures 

A helical rotation of the electric polarization can produce 
resonant soft x-ray diffraction peaks with anti-symmetric XCD 



Mirrored diffraction vectors detect opposite 
rotational patterns in chiral textures

P. Shafer, P. García-Fernández et al. submitted

Helical arrangement of the electric polarization and 
associated anisotropic octahedral distortion 

Continuous rotation of the local ferroelectric polarization
Continuous tilts of the Ti t2g-like orbitals relative to polarized x-ray beam

senses a clockwise helical rotation of the polarization

senses a counterclockwise helical rotation of the polarization

Anti-symmetric XCD in these diffraction spots is a result of the chiral 
texture being detected with opposite rotational sense



Evidence of quirality measured in polar vortex arrays 
by resonant soft x-ray diffraction 
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Evidence of quirality measured in polar vortex 
arrays by resonant soft x-ray diffraction 
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The intensity of the diffraction peak is markedly different for circularly 
polarized incoming x-rays with opposite left- and right-helicity, with 

differences on the order of ~20%.

Right handed polarized x-rays
Left   handed polarized x-rays
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Line cut through lateral satellite peaks

Lateral period of the counter-rotated 
vortex pair
8 nm (n=10)

11.4 nm (n=16)

The intensity of the diffraction peak is markedly different for circularly polarized 
incoming x-rays with opposite left- and right-helicity, with differences on the order 

of ~20%.
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Evidence of quirality measured in polar vortex arrays 
by resonant soft x-ray diffraction 
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Chirality can be induced by the complex interactions in artificial 
superlattices constructed from two non-chiral objects

Chirality manifests as an alternating in-
plane component of electric polarization, 

that couples to the swirling cores of a 
vortex structure

Second-principles simulations in very good agreement with 
resonant soft x-ray diffraction patterns
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Phase Evolution vs. superlattice periodicity

A. Damodaran et al. Nat. Mater. 16, 1003 (2017)



Structural evolution of ferroelectric and vortex 
phases with superlattice periodicity

Phase competition, order parameter coexistence and emergent order 
parameter in the same PbTiO3/SrTiO3 superlattice system

A. Damodaran et al. Nat. Mater. 16, 1003 (2017)



At room temperature, the coexisting vortex and ferroelectric 
phases spontaneously assemble in a mesoscale

A. Damodaran et al. Nat. Mater. 16, 1003 (2017)



The application of an electric field results in the deterministic 
interconversion between the vortex and the FE phase

Orders of magnitude changes in piezoelectric and nonlinear optical properties
A similar effect to colossal magnetorresistance
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Take home message
Ferroelectric a1/a2 domains coexist with vortex structures

Reversible phase transitions can be induced
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“Bubble domains” in 
Pb(Zr0.2Ti0.8)O3/SrTiO3/Pb(Zr0.2Ti0.8)O3
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PZT layers is 0.421 (±0.002) nm (see Table 1 for details), in 
agreement with prior values reported for PLD-grown ultrathin 
PbZr0.2Ti0.8O3 films.[29] In summary, on a “bulk” scale the films 
are c-axis oriented with no discernible in-plane domains.

The domain structure for the PZT_2ucSTO sample was first 
examined using high-resolution dual amplitude resonance 
tracking (DART)-PFM. Figure 1c–e shows topographic, DART-
PFM amplitude and phase images, respectively. They reveal a 
fascinating and complex polar nanodomain pattern. The entire 
film exhibits nanoscale platelet-like domains ranging from 
sub-10 to 20 nm in size. The DART-PFM amplitude (Figure 1d) 
reveals two significantly distinct domain topologies. Domains 
that are greater than ≈10 nm in lateral size appear ring-like 
(marked by white dashed boxes), where the domain walls, which 
separate the up and down domain states, are clearly visible. 
As the lateral size of the domain is greater than the thickness 
of the trilayer structure, these are analogous to the classical 
cylindrical domains with domain walls normal to the bottom 
interface. Topologically these domains appear similar to those 
observed by Lichtensteiger et al. for 50 nm thick PbTiO3 films 

with an STO spacer,[23] although their sizes were significantly 
larger, ≈20–100 nm. While they were termed as “bubble” they 
are analogues of cylindrical domains, with several smaller cylin-
ders perhaps merging anisotropically to result in the observed 
ovoid (pancake-like) shapes. The reduced domain size here 
(2–10 times smaller) is a direct consequence of the significantly 
lower film thickness.[20,30]

More interesting are the ultrasmall domains (<<10 nm) 
(marked by white boxes in Figure 1d). These domains appear 
as dark spots since PFM cannot distinguish signals from the 
domain and the domain wall due to the PFM resolution limit. 
Therefore, it becomes impossible to discern their out-of-plane 
polarization state. This could easily stem from the fact that their 
size hampers clear rendering of the domain wall. However, this 
topology was typically found for domains that are smaller than 
or at the limit of the film thickness (≈7 nm). This observation 
thus offers a more tantalizing perspective: that these are truly 
spheroid bubble domains, possessing a topological state which 
has a continuous local polarization rotation manifested through 
mixed Néel–Bloch domain walls.

Adv. Mater. 2017, 1702375

Figure 1. a) Schematic description of PZT/STO/PZT/LSMO/STO thin films; b) ARSM for (103) peak of PZT films with 2 u.c. STO spacer (PZT_2ucSTO 
film); c) topography, d) PFM amplitude, and e) PFM phase images of PZT_2ucSTO films, the scan size is 300 nm × 200 nm, white dashed boxes indicate 
the cylindrical domains with clear domain walls and white boxes indicate the bubble domains with fuzzy domains walls; f) statistical size distribution 
of nanoscale domains in PZT_2ucSTO films, the lateral size histogram reveals ≈70% of the domains are sub-10 nm regime.

Table 1. c lattice parameters of PZT sandwich films with various STO spacer thicknesses.

Unit: Å Fitting XRD TEM

LSMO Bottom PZT STO Top PZT STO thickness (u.c.) PZT (Avg) PZT (Avg)

PZT_1ucSTO 3.86 4.29 4.00 4.24 1 ± 0.5 4.22

PZT_2ucSTO 3.86 4.29 4.00 4.23 2 ± 0.5 4.22 4.24

PZT_3ucSTO 3.86 4.30 4.00 4.23 3 ± 0.5 4.19

PZT_4ucSTO 3.86 4.30 3.96 4.13 4 ± 0.5 4.13

© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1702375 (3 of 10)
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PZT layers is 0.421 (±0.002) nm (see Table 1 for details), in 
agreement with prior values reported for PLD-grown ultrathin 
PbZr0.2Ti0.8O3 films.[29] In summary, on a “bulk” scale the films 
are c-axis oriented with no discernible in-plane domains.

The domain structure for the PZT_2ucSTO sample was first 
examined using high-resolution dual amplitude resonance 
tracking (DART)-PFM. Figure 1c–e shows topographic, DART-
PFM amplitude and phase images, respectively. They reveal a 
fascinating and complex polar nanodomain pattern. The entire 
film exhibits nanoscale platelet-like domains ranging from 
sub-10 to 20 nm in size. The DART-PFM amplitude (Figure 1d) 
reveals two significantly distinct domain topologies. Domains 
that are greater than ≈10 nm in lateral size appear ring-like 
(marked by white dashed boxes), where the domain walls, which 
separate the up and down domain states, are clearly visible. 
As the lateral size of the domain is greater than the thickness 
of the trilayer structure, these are analogous to the classical 
cylindrical domains with domain walls normal to the bottom 
interface. Topologically these domains appear similar to those 
observed by Lichtensteiger et al. for 50 nm thick PbTiO3 films 

with an STO spacer,[23] although their sizes were significantly 
larger, ≈20–100 nm. While they were termed as “bubble” they 
are analogues of cylindrical domains, with several smaller cylin-
ders perhaps merging anisotropically to result in the observed 
ovoid (pancake-like) shapes. The reduced domain size here 
(2–10 times smaller) is a direct consequence of the significantly 
lower film thickness.[20,30]

More interesting are the ultrasmall domains (<<10 nm) 
(marked by white boxes in Figure 1d). These domains appear 
as dark spots since PFM cannot distinguish signals from the 
domain and the domain wall due to the PFM resolution limit. 
Therefore, it becomes impossible to discern their out-of-plane 
polarization state. This could easily stem from the fact that their 
size hampers clear rendering of the domain wall. However, this 
topology was typically found for domains that are smaller than 
or at the limit of the film thickness (≈7 nm). This observation 
thus offers a more tantalizing perspective: that these are truly 
spheroid bubble domains, possessing a topological state which 
has a continuous local polarization rotation manifested through 
mixed Néel–Bloch domain walls.

Adv. Mater. 2017, 1702375

Figure 1. a) Schematic description of PZT/STO/PZT/LSMO/STO thin films; b) ARSM for (103) peak of PZT films with 2 u.c. STO spacer (PZT_2ucSTO 
film); c) topography, d) PFM amplitude, and e) PFM phase images of PZT_2ucSTO films, the scan size is 300 nm × 200 nm, white dashed boxes indicate 
the cylindrical domains with clear domain walls and white boxes indicate the bubble domains with fuzzy domains walls; f) statistical size distribution 
of nanoscale domains in PZT_2ucSTO films, the lateral size histogram reveals ≈70% of the domains are sub-10 nm regime.

Table 1. c lattice parameters of PZT sandwich films with various STO spacer thicknesses.

Unit: Å Fitting XRD TEM

LSMO Bottom PZT STO Top PZT STO thickness (u.c.) PZT (Avg) PZT (Avg)

PZT_1ucSTO 3.86 4.29 4.00 4.24 1 ± 0.5 4.22

PZT_2ucSTO 3.86 4.29 4.00 4.23 2 ± 0.5 4.22 4.24

PZT_3ucSTO 3.86 4.30 4.00 4.23 3 ± 0.5 4.19

PZT_4ucSTO 3.86 4.30 3.96 4.13 4 ± 0.5 4.13

Q. Zhang et al. Adv. Mater. 1702375 (2017) 

Laterally confined spheroids of sub 10 nm-size with local dipoles self-aligned 
in a direction opposite to the macroscopic polarization of a surrounding 

ferroelectric matrix



“Bubble domains” in PbTiO3/SrTiO3 superlattices
Experimental challenge: 

Image with atomic resolution 

Theoretical challenge: 
Modern chiral skyrmionscan be topologically identical to 

classical magnetic bubble domains,
Can ferroelectric bubble domains can be considered a 

precursor to electrical skyrmions?

From Ramesh’s group
(see next talk)
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Hedgehog skyrmions both at 
the top and bottom interfaces

At the central plane, we find 
skymion like local pattern of 

dipoles
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N. D. Mermin: Topological theory of defects

a

(a)

~ tttt

(b)

FIG. 6. Two point singular-
ities 5' and Q and two sur-
rounding contours. The
winding number on the inner
contour is the sum of the
winding numbers deter-
mined by P and q separate-
ly. Since the inner contour
can be continuously de-
formed into the outer one,
this is also the winding
number for the outer con-
tou r.

FIG. 5. (a) and (b). Two planar spin configurations with wind-
ing numbers +l. (c) Configuration (b) has been altered to coin-
cide with configuration (a) in the core region near the singular
point, but remains unaltered away from the core region.

if and only if they have the same winding number. '
The classification scheme for the singularities was
thus entirely determined by a certain topol. ogical
property of the order-parameter space. We shal. l find
that similar conclusions can be reached for a large
class of ordered systems. In many cases, however,
the corresponding topological features of the order-
parameter space are not nearly as easy to grasp
intuitively, and a certain amount of mathematical
machinery can be of considerable help in extracting
the analogous results.
Before leaving the example of planar- spins, me note

a few additional useful points of more general validity.
Suppose there are two singul. ar points P and Q, with
winding numbers n and m. To find the minding number
for a contour that encircles both singularities, we
exploit the invariance of the winding number under de-
formations of the contour in the nonsingular region.
Thus we ean deform the contour into one that encircles
P, another that encircies Q, and two pieces that cover
the same ground but in opposite directions, to join the
pieces around P and Q. The part around P contributes
n, the part around Q contributes m, and whatever the
contribution from the third piece, the fourth piece
makes an equal and opposite contribution. The pro-
cedure is quite analogous to the evaluation of contour
integrals by the method of residues, and is illustrated
in Fig. 6.
Thus if we allow for pairs of defects, a contour with

winding number n might contain a pair the sum of
whose winding numbers is n, rather than just a single
defect with that winding number. However, by pre-

cisely the same reasoning as we have followed above,
we can argue that a pair of defects can be transformed
into a single one with the total net winding number,
without requiring the surgery to extend beyond the in-
terior of any contour surrounding the pair. Ef we ex-
tend our notion of equivalence to pairs of defects, then
any defect pair is equivalent to a single defect with
winding number equal to the sum of the winding num-
bers of the separate members of the pair (Fig. 7).
Thus we have not only classified the defects by the
additive group of integers, but we have also found that
defects can only combine to give ones characterized by
the sum of the characterizing integers. It is the gen-
eralization of this group-theoretic description of de-
fects and their combination laws that we shall be con-
structing in the s ections that fol l.ow.
The following point is also worth noting: a special

ease of the above conclusion is that a pair of defects
with winding numbers n and -n is equival. ent to a non-
singul. ar configuration. The physical manifestation
of that equivalence is that the defects can annihilate one
another within a bounded region without the need for any
rearrangement of the order-parameter field at large

(b)

It is an unfortunate feature of this example that closed real-
space contours (of importance in all examples) have the same
topological structure as the order-parameter space itself,
which in general, of course, can have any number of struc-
tures.

FIG. 7. (a) Two planar spin defects with winding number +l.
(b) The topologically equivalent single planar spin defect with
winding number +2.

Rev. Mod. Phys. , Vot. 51, No. 3, July 1979

N. D. Mermin
Rev. Mod. Phys. 51, 591 (1979)

All of them are 
topologically equivalent



Similar structures found in other
Condensed Matter Problems

In-plane lattice constant

the full surface Brillouin zone perpendicular to the nodal
ring plane.
As a remarkable feature of this model, we find that this

pseudospin vortex ring is connected to a monopole-anti-
monopole pair of the Weyl semimetal—an example of a
point defect pair annihilating without opening a gap.
Our model requires only a two-band construction. We

also provide a lattice version based on a two-orbital tight-
binding model. Its simplicity allows us to supply an
analytical computation of its Landau level spectrum.
The vortex ring (VR) model.—Consider the two-band

HVRðpx;py;pzÞ¼−
1

mz
pxpzσx−

1

mz
pypzσy

þ
!

1

2mr
ðp2

xþp2
y−p2

zÞ−
p2
0

2mr

"
σz; ð1Þ

with Pauli matrices σ acting on orbital or sublattice space
without electron spin degeneracy. p0 sets the radius of the
nodal ring centered on the origin of the pz ¼ 0 plane, while
p0=mr ðp0=mzÞ sets the Fermi velocities in (normal to) that
plane, respectively.
We demonstrate the resulting pseudospin texture in the

form of a toroidal magnetic field with quantized circulation
around the axis of revolution [Fig. 1(a)] by the following
nonperturbative procedure. First, in two dimensions, a
massless Dirac Hamiltonian in the ðpx; pzÞ plane with
unit Fermi velocity can be written as HDiracðpx; pzÞ ¼
−pzσx þ pxσz. Here, the pseudospin winds an angle þ2π
(giving the π Berry phase) on a counterclockwise circuit
enclosing the Dirac point [Fig. 1(a)]. Analogously, related to
a graphene bilayer, a 2D Hamiltonian with two vortices of
equal winding (and a resulting 2π Berry phase) is given as
Hbiðpx;pzÞ ¼−ðpxpzÞ=ðmzÞσxþðp2

x −p2
z −p2

0Þ=ð2mrÞσz
(see, e.g., Refs. [45,47]). The global 2π Berry phase is
distributed among two unit vortices at ðpx; pzÞ% ¼
ð%p0; 0Þ.
On rotating Hbiðpx; pzÞ around the pz axis, the two

isolated Dirac nodes trace out a circular nodal line in k-
space, resulting in the vortex ring Hamiltonian (1) with unit
winding around the axis of revolution.With this procedure, a

sequence of vortex ring Hamiltonians with higher winding
can also be generated, see the Supplemental Material [48].
The resulting energy spectrum exhibiting a nodal ring of

radius k0 is given by (setting mr ¼ mz ¼ ℏ ¼ 1, p ¼ k)

E% ¼ %
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2r − k2z − k20Þ2=4þ k2rk2z

q
ð2Þ

with the radial wave vector kr ≡ ðk2x þ k2yÞ1=2 [Fig. 1(b)].
The stability of the nodal ring arises from a particular

“mirror reflection” symmetry: a reflection with respect to
the z ¼ 0 mirror plane, combined with an opposite parity
of the two orbitals under such a transformation. The Bloch
Hamiltonian HðkÞ ¼ hðkÞ · σ thus transforms as hðkÞ→
(−hxðkx;ky;−kzÞ;−hyðkx;ky;−kzÞ;hzðkx;ky;−kzÞ). The
gaplessness of the nodal ring spectrum is then protected
by the mirror symmetry: hx ¼ hy ¼ 0 on the mirror plane.
The model explicitly breaks time-reversal and inversion
symmetry [50].
As an aside, we mention another type of nodal-ring

HamiltonianH¼ðk2r−k20Þσxþkzσy (see, e.g., Refs. [24–27])
requiring time-reversal and inversion symmetries. The
absence of the σz component results in a planar pseudospin
configuration throughout k-space. Even though this does
carry aBerry phase feature, the topological features discussed
below for HVR are absent.
The pseudospin Skyrmion.—We characterize the global

characteristic of the pseudospin vortex ring on different
planar cuts of k-space, labeled as I and IIa–IIc in Fig. 2(a).
First, by construction the pseudospins on the ky ¼ 0 plane (I)
are strictly planar with two vortices of equal winding
[(Fig. 2(b)]. Second, on different kz planes (IIa–IIc) the
pseudospins develop a full Skyrmion structure when kz ≠ 0
[14] [Figs. 2(c)–2(e)]; see Supplemental Material [48]. Note
that the sign of the Pontryagin index (Skyrmion number) of
the mapping from the kx − ky plane (with the “boundary
points” at large kr identified) to the Bloch sphere (defined for
the pseudospins) is independent of kz, despite the different
way the pseudospins wrap around the origin for kz of
different sign [Figs. 2(d),2(e)].

(d) k  =2.0 (IIb)(c) k  =0.0 (IIa)z z

k

k
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y

(e) k  = - 2.0 (IIc)z(b) k  =0.0 (I)y

kx

kz

k
k

k

x

y

z

(a) Planar cuts of k-space

IIa
IIb

IIc

I

FIG. 2. (a) Different planar cuts of k-space with fixed ky (labeled by I) and fixed kz (labeled by IIa, IIb, IIc). The red circle is the
position of the nodal ring. (b)–(e) Pseudospin textures of the vortex ring Hamiltonian (with k0 ¼ 2) on various cuts of the k-space. Away
from the kz ¼ 0 plane, (d) and (e), the pseudospin textures both carry a nonzero Pontryagin index PðkzÞ ¼ 1.
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Pseudospin Vortex Ring with a Nodal Line in Three Dimensions
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We present a model of a topological semimetal in three dimensions whose energy spectrum exhibits a
nodal line acting as a vortex ring; this in turn is linked by a pseudospin structure akin to that of a smoke
ring. Contrary to a Weyl point node spectrum, the vortex ring gives rise to Skyrmionic pseudospin patterns
in cuts on both sides of the nodal ring plane; this pattern covers the full Brillouin zone, thus leading to a
fully extended chiral Fermi arc and a new, “maximal,” anomalous Hall effect in a 3D semimetal. Tuning a
model parameter shrinks the vortex ring until it vanishes, giving way to a pair of Weyl nodes of opposite
chirality. This establishes a connection between two distinct momentum-space topologies—that of a vortex
ring (a circle of singularity) and a monopole-antimonopole pair (two point singularities). We present the
model both as a low-energy continuum and a two-band tight-binding lattice model. Its simplicity permits an
analytical computation of its Landau level spectrum.

DOI: 10.1103/PhysRevLett.118.016401

Introduction.—The fruitful search for topological materi-
als now extends beyond insulators. A most prominent
example is the Weyl semimetal, which despite the gapless-
ness of its bulk, hosts topologically protected surface states
[1–9]. The central conceptual shift is from the energy band
dispersion to the singularity structure in momentum space.
In this spirit, in graphene, the two-dimensional (2D) Dirac
fermion originates from the pseudospin vortex texture,
giving rise to the famous π Berry phase physics [10–12].
Its generalization is the three-dimensional (3D) Weyl fer-
mion, which emanates from a pseudospin monopole
[2,13,14]. The latter acts as the termination of the topological
Fermi arc [2] andgives rise to an intrinsic, albeit unquantized,
anomalous Hall effect (AHE), a condensed matter phenome-
non unique in 3D Weyl semimetals [15–18].
The key diagnostic of topological semimetals remains

the familiar one borrowed from band topology for a 2D
Chern insulator, namely, the Chern number reflected in
the physical Hall response [19–21]. Continuing with the
Weyl fermion example, when confining a pseudospin
monopole in the 3D Brillouin zone, one is led to a planar
Chern number that changes discontinuously from 0 to 1 as
the point singularity is crossed [2]. In other words, the
embedding of the point singularity in 3D momentum space
leads to stacks of 2D Skyrmionic pseudospin textures [14]
on only one, but not the other, side of the singularity. This
we call a planar Chern composition (PCC) rule correspond-
ing to the pseudospin monopole.
Here we construct a new band structure that shows that

the pseudospin monopole PCC is not a unique one. Our
analysis is motivated by recent interest in a new class of
symmetry-protected nodal ring semimetals [22–41], where
a line node that forms a closed loop in the energy spectrum.
Similarly to the Dirac points in graphene [20], this feature
requires symmetry protection.

This circular loop energy degeneracy opens the door to
an extended, rather than pointlike, singularity structure,
which we construct as follows. First, inspired by the smoke
ring in vortex dynamics [42,43] and studies of 2D graphene
bilayer with higher winding vortices [44,45], we directly
construct a class of pseudospin Hamiltonians exhibiting a
vortex ring, in the absence of both time-reversal and inversion
symmetries; on loops linking this ring, the pseudospin
winding can take on integer values [Fig. 1(a) shows the case
ofwinding number 1]. This gives rise to a toroidal smoke ring
Fermi surface [Fig. 1(a)].
The model, besides describing a nodal ring spectrum

[Fig. 1(b)] with an extended singularity, exhibits a new
PCC corresponding to the pseudospin vortex ring—it is
Skyrmionic on both sides of the vortex ring, in the absence
of a “fermion doubling problem” [46]. The new PCC implies
a “maximal” AHE for such a semimetal, as each planar cut
through the Brillouin zone (planes parallel to the nodal
ring plane) exhibits the same nonzero Chern number. The
associated chiral Fermi arc, as a result, wraps around
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FIG. 1. (a) Smoke ring pseudospin structure shown on the
toroidal Fermi surface close to the nodal ring. (b) The low-energy
nodal ring energy spectrum for kz ¼ 0. For clarity, both panels are
shown with a plane cut through the origin.
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Take home message

Ferroelectric bubble domains can be considered a precursor to 
electrical skyrmions

All layers along [001] plane do have a 
well defined skyrmion number of +1

Top and bottom interfaces show hedgehog like structures
Central planes show planar skyrmions
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From the “Workshop description”

The main goal of the workshop is to refine attendees’ picture of the
state of the art regarding ferroelectric domain walls properties and 

applications, focusing on what are the open problems, and what are the
opportunities for development of approaches to solve them

PHYSICAL REVIEW B 93, 195137 (2016)
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We present a first-principles-based (second-principles) scheme that permits large-scale materials simulations
including both atomic and electronic degrees of freedom on the same footing. The method is based on a predictive
quantum-mechanical theory—e.g., density functional theory—and its accuracy can be systematically improved
at a very modest computational cost. Our approach is based on dividing the electron density of the system
into a reference part—typically corresponding to the system’s neutral, geometry-dependent ground state—and a
deformation part—defined as the difference between the actual and reference densities. We then take advantage
of the fact that the bulk part of the system’s energy depends on the reference density alone; this part can be
efficiently and accurately described by a force field, thus avoiding explicit consideration of the electrons. Then,
the effects associated to the difference density can be treated perturbatively with good precision by working in a
suitably chosen Wannier function basis. Further, the electronic model can be restricted to the bands of interest.
All these features combined yield a very flexible and computationally very efficient scheme. Here we present
the basic formulation of this approach, as well as a practical strategy to compute model parameters for realistic
materials. We illustrate the accuracy and scope of the proposed method with two case studies, namely, the relative
stability of various spin arrangements in NiO (featuring complex magnetic interactions in a strongly-correlated
oxide) and the formation of a two-dimensional electron gas at the interface between band insulators LaAlO3 and
SrTiO3 (featuring subtle electron-lattice couplings and screening effects). We conclude by discussing ways to
overcome the limitations of the present approach (most notably, the assumption of a fixed bonding topology), as
well as its many envisioned possibilities and future extensions.

DOI: 10.1103/PhysRevB.93.195137

I. INTRODUCTION

Over the past two decades first-principles methods, in par-
ticular those based on efficient schemes like density functional
theory (DFT) [1–5], have become an indispensable tool in
applied and fundamental studies of molecules, nanostructures,
and solids. Modern DFT implementations make it possible
to compute the energy and properties (vibrational, electronic,
magnetic) of a compound from elementary information about
its structure and composition. Hence, in DFT investigations
the experimental input can usually be reduced to a minimum
(the number of atoms of the different chemical species, and
a first guess for the atomic positions and unit cell lattice
vectors). Further, the behavior of hypothetical materials can
be readily investigated, which turns the methods into the
ultimate predictive tool for application, e.g., in materials
design problems.

However, interpreting or predicting the results of experi-
ments requires, in many cases, to go beyond the time and length
scales that the most efficient DFT methods can reach today.
This becomes a very stringent limitation when, as it frequently
happens, the experiments are performed in conditions that are
out of the comfort zone of DFT calculations, i.e., at ambient
temperature, under applied time-dependent external fields, out
of equilibrium, under the presence of (charged) defects, etc.

The development of efficient schemes to tackle such
challenging situations, which are of critical importance in
areas ranging from biophysics to condensed matter physics

and materials science, constitutes a very active research field.
Especially promising are QM/MM multiscale approaches in
which different parts of the system are treated at different levels
of description: The most computationally intensive methods
[based on quantum mechanics (QM), as for example DFT
itself] are applied to a region involving a relatively small
number of atoms and electrons, while a large embedding region
is treated in a less accurate molecular mechanics (MM) way
(e.g., by using one of many available semiempirical schemes).

Today’s multiscale implementations tend to rely on
semiempirical methods—like tight-binding [6,7] and force-
field [8,9] schemes—that were first introduced decades ago.
In some cases, such schemes are designed to retain DFT-
like accuracy and flexibility as much as possible. One rele-
vant example are the self-consistent-charge density-functional
tight-binding (DFTB) techniques [10–12], and related ap-
proaches [13–15], which retain the electronic description and
permit an essentially complete treatment of the compounds.
Another relevant example are the effective Hamiltonians
developed to describe ferroelectric phase transitions and other
functional effects [16–18]; these are purely lattice models
(i.e., without an explicit treatment of the electrons) based
on a physically-motivated coarse-grained representation of
the material, and have been shown to be very useful even
in nontrivial situations involving chemical disorder [19] and
magnetoelectric effects [20], among others. Such methods
have demonstrated their ability to tackle many important
problems (see, e.g., Refs. [15,21–23] for the DFTB approach),

2469-9950/2016/93(19)/195137(28) 195137-1 ©2016 American Physical Society
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Abstract
We present a scheme to construct model potentials, with parameters computed from first principles,
for large-scale lattice-dynamical simulations of materials. We mimic the traditional solid-state
approach to the investigation of vibrational spectra, i.e., we start from a suitably chosen reference
configuration of the compound and describe its energy as a function of arbitrary atomic distortions by
means of a Taylor series. Such a form of the potential-energy surface is general, trivial to formulate
for any material, and physically transparent. Further, such models involve clear-cut approximations,
their precision can be improved in a systematic fashion, and their simplicity allows for convenient and
practical strategies to compute/fit the potential parameters. We illustrate our scheme with two
challenging cases in which the model potential is strongly anharmonic, namely, the ferroic perovskite
oxides PbTiO3 and SrTiO3. Studying these compounds allows us to better describe the connection
between the so-called effective-Hamiltonian method and ours (which may be seen as an extension of
the former), and to show the physical insight and predictive power provided by our approach—e.g.,
we present new results regarding the factors controlling phase-transition temperatures, novel phase
transitions under elastic constraints, an improved treatment of thermal expansion, etc.

(Some figures may appear in colour only in the online journal)

1. Introduction

The development of methods for statistical simulations
with first-principles accuracy remains one of the major
challenges for the community working on computational
condensed-matter physics and materials science. In spite of
recent advances, state-of-the-art first-principles methods are
still unable to reach the length and time scales that are
relevant for the study of many properties of interest at realistic
operating conditions. Ranging from temperature-driven phase

transitions to thermally-activated processes of all sorts, there
are countless phenomena whose first-principles treatment has
a prohibitive computational cost, even if one resorts to the
most numerically-efficient schemes such as density-functional
theory (DFT) [1]. Hence, there is a need to develop
approximate methods that allow for fast calculations while
retaining the first-principles accuracy and, if possible,
predictive power. Much of the on-going activity on multi-scale
simulations is the direct consequence of this situation.
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Vortex structure stable up to 85 K

P. Shafer, P. García-Fernández et al. submitted

The actual transition temperature might be significantly higher than this theoretical value, as 
an accurate determination of the transition point is known to be especially challenging to 

second-principles methods

T<80 Chiral vortex stable 

T>80 Vortex unstable 
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At high temperature, thermal fluctuations allow local flipping of some dipoles
The domain wall changes their shape from one plane to the next
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SrTiO3

Potential detection of the axial component in planar view   
HR-STEM or dark field transmission electron microscopy

Variations in the strength and 
orientation of the axial 

polarization as a function of 
depth act to dilute the signal 

below detection limits

Nanoscale vortex modulation in 
PbTiO3/SrTiO3 superlattices and 
particularly depth-dependence 

challenges nearly every advanced 
characterization technique in 
detecting the alternating axial 

polarization 



Anisotropic tensor susceptibility (ATS) scattering
Near resonant transitions, the x-rays are sensitive to the 

anisotropic electronic structure of the distorted TiO6 octahedra

The anisotropic dielectric response of each TiO6 unit to 
resonant soft x-rays provides a contribution to the x-ray 

scattering amplitude that varies with polarization orientation



Anisotropic tensor susceptibility (ATS) scattering
Near resonant transitions, the x-rays are sensitive to the 

anisotropic electronic structure of the distorted TiO6 octahedra

The chiral helical structure imparts a chiral structure factor onto 
the scattering amplitude

The chiral electric polarization texture of the vortex arrays 
generates a coherent superposition of chiral structure factors



For larger SrTiO3 thickness, electrostatic 
coupling decreases

SrTiO3 polarization reduces in ~30% from (3/3) to (6/6)

Progressive electrostatic decoupling
(P. Zubko et al. Nano Letters 12, 2846 (2012)

Evolution of the interlayer coupling with thickness 
in (PbTiO3)n/(SrTiO3)n



PbTiO3/SrTiO3 6/6 superlattices (DyScO3 substrate)
Parallel Antiparallel

Offset “No-py”



Different screening mechanisms of the
depolarizing field

C. Lichtensteiger, P. Zubko, M. Stengel, P. Aguado-Puente, J.-M. Triscone, Ph. Ghosez and J. Junquera. 
Chapter 12 in Oxide Ultrathin Films, Science and Technology, Wiley (2011).
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Definition of chirality and optical activity
A system is said to be chiral when it cannot be transformed into its mirror image 

with rotations and translations alone 

In 2D:

χειρ = hand

In 3D: α-quartz

A handedness can be defined using the right-hand rule.

Compounds with chiral symmetry are optically active: 
polarization direction of linearly-polarized light rotates 
when light travels through the material.



Chirality of the observed structures

Mirror plane

Case without out-of-plane component of the poralization



Chiral dipole arrangements could open the door to 
switchable optical activity

E

Electro-optic device

Four-fold stability → four “memory” states.
Positive/negative polarization   

X
clockwise/anticlockwise vortex

If toroidal moment can coexist with a 
polarization parallel to the toroidal axis 
in ferroelectric nanostructures, 
switchable chirality and optical activity 
could be accomplished 

Enhanced conductivity 
in vortices in BiFeO3

Balke, Nature Physics (2012)

This kind of dipole arrangements have 
been experimentally realized!



SrTiO3 polarization reduces in ~30% from (3/3) to (6/6)

Progressive electrostatic decoupling
P. Zubko et al. Nano Letters 12, 2846 (2012)

PTO polarization decreases upon
upproaching the interface, in agreement

with EELS measurements.

Evolution of the interlayer coupling with thickness 
in (PbTiO3)n/(SrTiO3)n

For larger SrTiO3 thickness, 
electrostatic coupling decreases



Mirrored diffraction vectors detect opposite 
rotational patterns in chiral textures

P. Shafer, P. García-Fernández et al. submitted

Helical arrangement of the electric polarization and 
associated anisotropic octahedral distortion 

Continuous rotation of the local ferroelectric polarization
Continuous tilts of the Ti t2g-like orbitals relative to polarized x-ray beam

senses a clockwise helical rotation of the polarization

senses a counterclockwise helical rotation of the polarization

Anti-symmetric XCD in these diffraction spots is a result of the chiral 
texture being detected with opposite rotational sense


